Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

B.ARCH - SEMESTER- V EXAMINATION - SUMMER 2017

Subject Code: 1055004 Date:22/11/ 2017

Subject Name: Structure – V Time:10:30 AM TO 12:30 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of IS -800 and steel table is permitted
- Q.1 (a) Enlist various types of steel structures with sketches
 (b) Write short note on: Beam to Beam Web angle connection
 (c) Explain various types of welds with sketches
 03
- Q.2 (a) Give advantages and disadvantages of structural steel.
 - (b) Write advantages of bolted connections over riveted and welded connections. 05

OR

- (b) A tie plate of 100 X 8 mm is connected to the gusset plate to transmit a factored 05 load of 120 kN. Determine the size and length of fillet weld. Assume field welds and Fe 410 steel.
- Q.3 Two plates 120 X 10 mm and 120 X 16 mm are connected by lap joint to resist 10 factored tensile load of 120 KN. Design a lap joint using M 16 bolts of grade 4.6 and grade 410 plates.

OR

- Q.3 Two plates of 8 mm thickness are connected by single bolted double cover plated butt joint using 20 mm bolts at 50 mm pitch. Calculate the efficiency of the joint
- Q.4 A tension member in a bracing system consists of 2 angles placed back to back on each side of the gusset plate and subjected to factored tensile load of 350 kN. Design the tension member using M 20 bolts and $f_y = 250 \text{ N/mm}^2$.

OR

- Q.4 Design a single angle tensile member to carry a tensile load of 200 kN assuming 10 single row of M 20 bolts and $f_y = 250 \text{ N/mm}^2$.
- Q.5 Determine the design axial compressive load on column section ISMB 400 @ 61.6 $\,$ Kg/m having length of 4.5 m between intersections and pinned at ends. Take f_y = 250 MPa.

OR

Q.5 Design a steel column to carry factored axial load of 1300 kN. The length of column is 3.2 m and hinged at both ends. Assume $f_y = 250$ MPa.

Total Marks: 50