GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1/2 EXAMINATION - WINTER 2017

Subject Code: 110008 Date: 03/01/2018

Subject Name: Maths - I

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Attempt the following
 - Prove that $f(x) = \begin{cases} x, x < 0 \\ x^2, x \ge 0 \end{cases}$ is continuous at x = 0.
 - (ii) Find c of the mean value theorem for $f(x) = \log x$; $x \in [1, e]$.
 - **(b)** Attempt the following
 - (i) Use Taylor's series to find the expansion of $\log_{e} x$ in powers of (x-1).
 - (ii) Evaluate $\lim_{x \to 0} \frac{\tan^2 x x^2}{x^2 \tan^2 x}.$
- Q.2 (a) Attempt the following
 - (i) $\text{Evaluate } \lim_{x \to \frac{\pi}{2}} \cos x \log \tan x.$ 3
 - (ii) Find the local extreme values of $f(x) = x^3 9x^2 + 15x + 11$.
 - **(b)** Attempt the following
 - (i) Test the convergence of $\frac{1}{12} + \frac{1}{34} + \frac{1}{56} + \dots \infty$
 - (ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$
- Q.3 (a) Attempt the following
 - (i) Find F'(x) for $F(x) = \int_{3}^{\sin x} \frac{1}{1+t^2} dt$.
 - (ii) Check the convergence of $\int_{0}^{3} \frac{dx}{\sqrt{9-x^2}}$
 - **(b)** Find the area of the region between the x-axis and the graph of $f(x) = x^3 x^2 2x, -1 \le x \le 2$.
- Q.4 (a) If $u = x^2y + y^2z + z^2x$, prove that $(i)\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2u = 6(x + y + z)$

$$(ii)\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 2(x + y + z)$$

(b) If u = f(2x - 3y, 3y - 4z, 4z - 2x), prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$

- **Q.5** (a) Attempt the following
 - (i) Evaluate $\iint_{R} e^{2x+3y} dA$ where R is the triangle bounded by x=0, y=0 and x+y=1.
 - (ii) Evaluate $\iint_{0}^{R} \int_{0}^{x+y+z} dz dy dx.$
 - (b) Evaluate $\int_{0}^{2a} \int_{x^2/4a}^{3a-x} (x^2 + y^2) dA$ by changing the order of integration.
- **Q.6** (a) A vector field is given by $\overline{F} = (x^2 + xy^2)i + (y^2 + x^2y)j$. Show that \overline{F} is irrotational and find its scalar potential.
 - (b) Verify Gauss' divergence theorem for $\overline{F} = yi + xj + z^2k$ for the cylindrical region S given by $x^2 + y^2 = a^2$; z = 0 and z = h.
- Q.7 (a) Attempt the following
 - (i) Using Green's theorem evaluate $\oint_C [(xy x^2)dx + x^2ydy]$ along the closed curve 3
 - C formed by y=0, x=1 and y=x. (ii) Find the extreme values for $x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$.
 - **(b)** Attempt the following
 - (i) Expand $e^x \log(1+y)$ in powers of x and y.
 - (ii) Find the directional derivative of the function $\phi = x^2z + 2xy^2 + yz^2$ at the point (1,2,-1) in the direction of the vector $\vec{a} = 2i + 3j 4k$.
