\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-1/2 EXAMINATION - WINTER 2017

Subject Code: 110008
Date: 03/01/2018
Subject Name: Maths - I
Time: 10:30 AM TO 01:30 PM
Total Marks: 70

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Attempt the following
(i) Prove that $f(x)=\left\{\begin{array}{c}x, x<0 \\ x^{2}, x \geq 0\end{array}\right.$ is continuous at $x=0$.
(ii) Find c of the mean value theorem for $f(x)=\log x ; x \in[1, e]$.
(b) Attempt the following
(i) Use Taylor's series to find the expansion of $\log _{e} x$ in powers of $(x-1)$.
(ii) Evaluate $\lim _{x \rightarrow 0} \frac{\tan ^{2} x-x^{2}}{x^{2} \tan ^{2} x}$.
Q. 2 (a) Attempt the following
(i) \lim

Evaluate $x \rightarrow \pi / 2 \cos ^{\cos \log \tan x}$.
(ii) Find the local extreme values of $f(x)=x^{3}-9 x^{2}+15 x+11$.
(b) Attempt the following
(i) Test the convergence of $\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\ldots \infty$
(ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{3^{n} n!}{n^{n}}$
Q. 3 (a) Attempt the following
(i) Find $F^{\prime}(x)$ for $F(x)=\int_{3}^{\sin x} \frac{1}{1+t^{2}} d t$.
(ii) Check the convergence of $\int_{0}^{3} \frac{d x}{\sqrt{9-x^{2}}}$
(b) Find the area of the region between the x-axis and the graph of $\mathbf{0 7}$ $f(x)=x^{3}-x^{2}-2 x,-1 \leq x \leq 2$.
Q. 4 (a)

If $u=x^{2} y+y^{2} z+z^{2} x$, prove that $\quad(i)\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=6(x+y+z)$
(ii) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=2(x+y+z)$
(b) If $u=f(2 x-3 y, 3 y-4 z, 4 z-2 x)$, prove that $\frac{1}{2} \frac{\partial u}{\partial x}+\frac{1}{3} \frac{\partial u}{\partial y}+\frac{1}{4} \frac{\partial u}{\partial z}=0$
Q. 5 (a) Attempt the following
(i) Evaluate $\iint_{R} e^{2 x+3 y} d A$ where R is the triangle bounded by $x=0, y=0$ and $x+y=1$.
(ii) Evaluate $\int_{0}^{a} \int_{0}^{x+y} \int_{0}^{x+y} e^{x+y+z} d z d y d x$.
(b) Evaluate $\int_{0}^{2 a} \int_{x^{2} / 4 a}^{3 a-x}\left(x^{2}+y^{2}\right) d A$ by changing the order of integration.
Q. 6 (a) A vector field is given by $\bar{F}=\left(x^{2}+x y^{2}\right) i+\left(y^{2}+x^{2} y\right) j$. Show that \bar{F} is irrotational and find its scalar potential.
(b) Verify Gauss' divergence theorem for $\bar{F}=y i+x j+z^{2} k$ for the cylindrical region S given by $x^{2}+y^{2}=a^{2} ; z=0$ and $z=h$.
Q. 7 (a) Attempt the following
(i) Using Green's theorem evaluate $\oint_{C}\left[\left(x y-x^{2}\right) d x+x^{2} y d y\right]$ along the closed curve

C formed by $y=0, x=1$ and $y=x$.
(ii) Find the extreme values for $x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4$.
(b) Attempt the following
(i) Expand $e^{x} \log (1+y)$ in powers of x and y.
(ii) Find the directional derivative of the function $\phi=x^{2} z+2 x y^{2}+y z^{2}$ at the point $(1,2,-1)$ in the direction of the vector $\bar{a}=2 i+3 j-4 k$.

