\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER $1^{\text {st }} / 2^{\text {nd }}$ (OLD) EXAMINATION WINTER 2016

Subject Code: 110009

Date: 20/01/2017
Subject Name: Mathematics-II
Time: 10:30 AM TO 1:30 PM
Total Marks: 70
Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) 1. Solve the following system by Gauss elimination method:

4. Solve the system 04

(b) 1. Solve the system

Jordan method.

Hermitian matrix.
Q. 2 (a) 1. Find the vectors in with Euclidean norm 1 whose Euclidean inner 03 product with

```
2. State Cauchy-Schwarz inequality in \(x^{3}\). Verity Cauchy-Schwarz
inequality for the vectors Also, find \|uer • \(\cdot \mathrm{m}\|\|\).
```

(b) 1. Let $\mathrm{pl}^{4}: \mathrm{m}^{2 \pi} \cdot 2 \mathrm{~m}^{2}$ be a multiplication by . Determine whether T has an 02

2．Show that the linear transformation P^{4} ：

3．Determine the algebraic and geometric multiplicity of the matrix

	$\left.\begin{array}{\|cc\|} \hline 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{array} \right\rvert\,$				

（b） 1 ．

and hence find x^{5} 에 and
2．Reduce the quadratic form to canonical form by linear transformation．

Q． 4 （a）
 linearly independent in
2.
 elimination method．
（b） 1 ．
敬学品

2．Find the matrix representation of quadratic form

3．Obtain the matrix of a linear transformation

Q． 5 （a） 1.

(b) 1. Letfras $x^{2} \cdot 2 \cdot 2 x^{5 / 2}$ the linear transformationdefined by

FH(

Q.6 (a) 1.	Let ${ }^{2}$ be the set of all ordered pairs of real numbers with vector
addition defined as	

(b) 1. Let : : 4 is linearly independent.
2 If space of a vector space of

(i) Find the matrix
(ii) Find the matrix ${ }^{\text {南 }}$ w.r.t. the basis
2. Define: Symmetric matrix, Skew- Symmetric Matrix, Diagonal matrix 03

