\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-1/2 EXAMINATION - WINTER 2017

Subject Code: 110009
Date: 30/12/2017
Subject Name: Maths-II (entry year 2008-10 having backlog)
Time: 10:30 AM TO 01:30 PM
Total Marks: 70

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Use Gauss elimination to solve the system of linear equations

$$
x_{1}-2 x_{2}-3 x_{3}=0, \quad 2 x_{2}+x_{3}=-8,-x_{1}+x_{2}+2 x_{3}=3
$$

(b) Find the inverse of a matrix by using Gauss Jordan method

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Q. 2 (a) Show that the set of all pairs of real numbers of the form $(1, y)$ is a vector space under the operations
$\left(1, y_{1}\right)+\left(1, y_{2}\right)=\left(1, y_{1}+y_{2}\right)$ and $k(1, y)=(1, k y)$.
(b) (1) Check whether the following are subspaces or not:
(i) All vectors of the form $(a, b, 0), V=R^{3}$
(ii) All 2×2 matrices A such that $\operatorname{det}(\mathrm{A})=0$
(2) Show that the vector $v=(1,7,3)$ is a linear combination of the vectors $v_{1}=(1,-1,2), v_{2}=(0,4,2), v_{3}=(-1,5,3)$.
Q. 3 (a) Check for linear dependence independence of the following:

$$
\text { (1) }(-3,0,4),(5,-1,2),(1,1,3), 02
$$

(2) $2 x^{2}-x+7, x^{2}+4 x+2, x^{2}-2 x+4 \quad 03$
(3) $1, e^{x}, e^{2 x}$

02
(b) Determine the dimension and basis for the solution space of the following:

$$
\begin{gathered}
x_{1}-3 x_{2}+x_{3}=0 \\
2 x_{1}-6 x_{2}+2 x_{3}=0 \\
3 x_{1}-9 x_{2}+3 x_{3}=0
\end{gathered}
$$

Q. 4 (a) Verify rank nullity theorem for the matrix

$$
\left[\begin{array}{ccc}
1 & -1 & -1 \\
4 & -3 & -1 \\
3 & -1 & 3
\end{array}\right]
$$

(b) Let $\bar{u}=\left(u_{1}, u_{2}\right)$ and $\bar{v}=\left(v_{1}, v_{2}\right)$ be vectors in R^{2}. Verify that the inner $\mathbf{0 7}$ product

$$
\langle\bar{u}, \bar{v}\rangle=3 u_{1} v_{1}+5 u_{2} v_{2}
$$

satisfies the four inner product axioms.
Q. 5 (a) Let R^{3} have the Euclidean inner product. Use Gram-Schmidt process to transform the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ into an orthonormal basis, where

$$
u_{1}=(1,1,1), u_{2}=(-1,1,0), u_{3}=(1,2,1)
$$

(b) Find the least squares solution of the system $A X=\boldsymbol{b}$ given by
$2 x-2 y=2, x+y=-1,3 x+y=1$.
Q. 6 (a) Check for linear transformation
(1) $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(2 x-y, x-y) \quad 02$
(2) $T: R^{2} \rightarrow R^{3}$ defined by $T(x, y)=(x, y+2, x+y)$
(3) $T: M_{n n} \rightarrow M_{n n}$ defined by $T(A)=A^{T}$
(b)

Let $T: R^{2} \rightarrow R^{3}$ defined by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{2} \\ -5 x_{1}+13 x_{2} \\ -7 x_{1}+16 x_{2}\end{array}\right]$. Find the matrix for the transformation T with respect to the basis $B=\left\{u_{1}, u_{2}\right\}$ for R^{2} and $B^{\prime}=$

$$
\begin{aligned}
& \left\{v_{1}, v_{2}, v_{3}\right\} \text { for } R^{3} \text { where } u_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{l}
5 \\
2
\end{array}\right], v_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \\
& v_{2}=\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] .
\end{aligned}
$$

Q. 7 (a) Find the eigenvalues and eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

(b) Verify Cayley-Hamilton theorem for the matrix A where

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 1 \\
1 & 3 & 3
\end{array}\right]
$$

