Seat No.: ____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEMESTER 1st / 2nd (OLD) EXAMINATION WINTER 2016

Subject Code: 110015 Date:20/01/2017

Subject Name: Vector Calculus and Linear Algebra

Time: 10:30 AM TO 1:30 PM **Total Marks: 70**

Instructions:

- 1. Attempt any five questions.
- Make suitable assumptions wherever necessary.
- Figures to the right indicate full marks.
- **Q.1** 03 The shape of a cable from an antenna tower is given by the equation $y = \frac{4}{2}x^{\frac{3}{2}}$ (a) from x = 0 to x = 20. Find the total length of the cable.
 - Find the directional derivative of the function $f(x,y,z) = x y^2 + y z^3$ at the 04 point (2,-1,1) in the direction of the vector i + 2j + 2k
 - (c) Find div \vec{F} and curl \vec{F} , where $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$. 07
- (a) Use Green's theorem to evaluate $\int_c (3x^2 8y^2) dx + (4y 6xy) dy$ where c is the boundary of the region defined by y = x and $y = x^2$. **Q.2** 07
 - (b) Use the divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, ds$ where $\vec{F} = xi + yj + zk$ and s is the portion of the plane x + 2y + 3z = 6 which lies in the first octant. 07
- Find the inverse (if possible) of $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ 0.3 (a) 03
 - (b) Solve the equation 3x + y + 2z = 3, 2x 3y z = -3, x + 2y + z = 404 By Gauss-elimination method.
 - Reduce the following matrix into reduced raw echelon form and find its rank 07 (c)

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}.$$

- Let u=(-3,2,1,0), v=(4,7,-3,2) and w=(3,-2,-1,9)**Q.4** 03
 - Find(1). 2u + 7v (2). $\|u+w\|$ (3). u.v (Euclidean inner product) Evaluate det (A) where $A = \begin{bmatrix} 21 & 17 & 7 & 10 \\ 24 & 22 & 6 & 10 \\ 6 & 8 & 2 & 3 \\ 6 & 7 & 1 & 2 \end{bmatrix}$ **(b)** 04
 - (c) Check whether $V=\{(1, x) | x \in R \}$ is a vector space over R with operations 07 (1, y) + (1, z) = (1, y + z) and k(1, y) = (1, ky).
- Define (1). Subspace (2). Linear combination (3). Basis 07 0.5 Determine which of the following subspaces of R³ are.
 - (1). All vectors of the form (a,0,0) where $a \in R$
 - (2). All vectors of the form (a,1,1) where $a \in R$
 - (c) Find the basis for the row and column space of **07**

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 \\ 2 & -6 & 9 & -1 & 8 \\ 2 & -6 & 9 & -1 & 9 \\ -1 & 3 & -4 & 2 & -5 \end{bmatrix}$$

Q.6 (a) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$

07

- (1). Find the eigen value of A.
- (2). For each eigen value, find eigen vector corresponding to eigen value.
- (3) Is A diagonalizable? Justify your conclusion.
- (b) Define: (1) Symmetric matrix (2) Skew symmetric matrix (3) Hermitian matrix (4) Skew- Hermitian matrix (5) Linear transformation
 Let T: R² → R³ is defined by T(x, y) = (x + y, x y, y), show that T is a Linear transformation
- Q.7 (a) Define: inner product space. Let R^4 have Euclidean inner product space. Find the cosine of the angle between the vectors u = (4,3,1,-2) and v = (-2,1,2,3).
 - (b) Let R³ have Euclidean inner product space. Use the Gram-Schmidt process to transform the basis $\{u_1, u_2, u_3\}$ into an orthonormal basis where $u_1 = (1,1,1)$ $u_2 = (0,1,1)$, $u_3 = (0,0,1)$
