\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER $1^{\text {st }} / 2^{\text {nd }}$ (OLD) EXAMINATION WINTER 2016

Subject Code: 110015

Date:20/01/2017

Subject Name: Vector Calculus and Linear Algebra

 Time:10:30 AM TO 1:30 PMTotal Marks: 70
Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) The shape of a cable from an antenna tower is given by the equation $y=\frac{4}{3} x^{\frac{\pi}{2}}$ from $x=0$ to $x=20$. Find the total length of the cable.
(b) Find the directional derivative of the function $f(x, y, z)=x y^{2}+y z^{3}$ at the $\mathbf{0 4}$ point ($2,-1,1$) in the direction of the vector $i+2 j+2 k$
(c) Find $\operatorname{div} \vec{F}$ and curl \vec{F}, where $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
Q. 2 (a) Use Green's theorem to evaluate $\int_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where c is the boundary of the region defined by $y=x$ and $y=x^{2}$.
(b) Use the divergence theorem to evaluate $\iint_{s} \vec{F} . \hat{n} d s$ where $\vec{F}=x i+y j+z k$ and s is the portion of the plane $x+2 y+3 z=6$ which lies in the first octant.
Q. 3 (a)

Find the inverse (if possible) of $A=\left[\begin{array}{rrr}1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$
(b) Solve the equation $3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=4$

By Gauss-elimination method.
(c) Reduce the following matrix into reduced raw echelon form and find its rank

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 3 & 2 \\
3 & 2 & 1 & 3 \\
6 & 8 & 7 & 5
\end{array}\right]
$$

Q. 4 (a) Let $u=(-3,2,1,0), v=(4,7,-3,2)$ and $w=(3,-2,-1,9)$

Find (1). $2 \mathrm{u}+7 \mathrm{v}$ (2). $\|\mathrm{u}+\mathrm{w}\|$ (3). u.v (Euclidean inner product)
(b)

Evaluate $\operatorname{det}(A)$ where $A=\left[\begin{array}{cccc}21 & 17 & 7 & 10 \\ 24 & 22 & 6 & 10 \\ 6 & 8 & 2 & 3 \\ 6 & 7 & 1 & 2\end{array}\right]$
(c) Check whether $\mathrm{V}=\{(1, x) / x \in R\}$ is a vector space over R with operations
$(1, y)+(1, z)=(1, y+z)$ and $\mathrm{k}(1, y)=(1, \mathrm{k} \boldsymbol{y})$.
Q. 5 (a) Define (1). Subspace (2). Linear combination (3). Basis

Determine which of the following subspaces of R^{3} are.
(1). All vectors of the form $(a, 0,0)$ where $a \in R$
(2). All vectors of the form $(a, 1,1)$ where $a \in R$
(c) Find the basis for the row and column space of
$A=\left[\begin{array}{rrrrr}1 & -3 & 4 & -2 & 5 \\ 2 & -6 & 9 & -1 & 8 \\ 2 & -6 & 9 & -1 & 9 \\ -1 & 3 & -4 & 2 & -5\end{array}\right]$
(a)
Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2\end{array}\right]$
(1). Find the eigen value of A.
(2).For each eigen value, find eigen vector corresponding to eigen value.
(3) Is A diagonalizable? Justify your conclusion.
(b) Define: (1) Symmetric matrix (2) Skew symmetric matrix (3) Hermitian matrix
(4) Skew- Hermitian matrix (5) Linear transformation

Let $T: R^{2} \rightarrow R^{3}$ is defined by $T(x, y)=(x+y, x-y, y)$, show that T is a Linear transformation
Q. 7 (a) Define: inner product space. Let R^{4} have Euclidean inner product space. Find the cosine of the angle between the vectors $u=(4,3,1,-2)$ and $v=(-2,1,2,3)$.
(b) Let R^{3} have Euclidean inner product space. Use the Gram-Schmidt process to transform the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ into an orthonormal basis where $u_{1}=(1,1,1)$ $u_{2}=(0,1,1), u_{3}=(0,0,1)$

