\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-1/2 EXAMINATION - WINTER 2017

Subject Code: 110015

Date:30/12/2017
Subject Name: Vector Calculus and Linear Algebra Time: 10:30 AM TO 01:30 PM

Total Marks: 70 Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a)

(1) Find the determinant of $\mathrm{A}=$
(b)
(2) Solve the system by Gauss Elimination method:
$x+y+2 z=9,2 x+4 y-3 z=1,3 x+6 y-5 z=0$
Q. 2 (a) Verify green's theorem for the function $F=(x+y) i+2 x y j$ and C is the
rectangle in the $x y$-plane bounded by $x=0, y=0, x=a, y=b$.
(b) (1) Find directional derivative of the function $f(x, y, z)=a x+b y$; a, b are
constants, at the point $P(0,0)$ which makes an angle of 30° with positive x axis.
(2) Find a potential function for the field $F=e^{y+2 z}(i+x j+2 x k)$.

(b)

(2) Show that the set $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for R^{3} where $\mathrm{v}_{1}=(1,2,1), \mathrm{v}_{2}=(2,9,0)$ and $\mathrm{v}_{3}=(3,3,4)$.

$T(x, y, z)=(3 x+y,-2 x-4 y+3 z, 5 x+4 y-2 z)$. Show that T is one to one and find $\mathrm{T}^{-1}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
(2) Consider the basis $S=\{u, v, w\}$ for R, where $u=(1,1,1), v=(1,1,0)$ and
 $T(v)=(2,-1)$ and $T(w)=(4,3)$. Find formula for $T(x, y, z)$ and use it to find T ($2,-3,5$)
Q. 5 (a) Using Gram Schmidt process, construct an orthonormal basis for R basis is the set $\{(1,1,1),(0,1,1),(0,0,1)\}$
(b) (1) Find the least square solution of the linear system $\mathrm{Ax}=\mathrm{b}$ given by $x-y=4,3 x+2 y=1,-2 x+4 y=3$ and find the orthogonal projection of b on the column space of A
(2) Let M_{22} have the inner product $\langle\mathrm{A}, \mathrm{B}\rangle=\operatorname{tr}\left(\mathrm{A}^{\mathrm{T}} \mathrm{B}\right)$. Find the Cosine of the

Q. 6 (a) (1) Find A^{10} for $\mathrm{A}=\left[\begin{array}{ll}\mathrm{il} & 0 \\ {[i n} \\ i l & 2\end{array}\right]$

(b)

Verify Cayley Hamilton theorem for $A=\left[\begin{array}{ccc}7 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$ and use it to find the value
of $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$.
Q. 7 (a) (1) Find the magnitude and the direction of the greatest change of $u=x y z^{2}$ at $(1,0,3)$
(2) Find the work done when a force $F=\left(x^{2}-y^{2}+x\right) i-(2 x y+y) j$ moves a particle in the $x y$-plane from $(0,0)$ and $(1,1)$ along the parabola $y^{2}=x$. Is the work done different when the path is the straight-line $\mathrm{y}=\mathrm{x}$?
(b) (1) Find a basis for the subspace of P_{2} spanned by the vectors $1+\mathrm{x}, \mathrm{x}^{2},-2+2 \mathrm{x}^{2},-3 \mathrm{x}$.
(2) Define: Subspace, symmetric matrix, skew symmetric matrix, orthogonal matrix

