\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE SEMESTER $1^{\text {st }} / 2^{\text {nd }}$ (NEW) EXAMINATION WINTER 2016

Subject Code: 2110015
 Date:20/01/2017
 Subject Name: Vector Calculus and Linear Algebra Time:10:30 AM TO 1:30 PM
 Total Marks: 70
 Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 Objective Question (MCQ)
(a) Choose the appropriate answer for the following MCQs.
4. Rank of 3×3 invertible matrix is
a) 1
b) 2
c) 3
d) 4
5. Let A be a Skew- Hermitian matrix then $A=$ \qquad
a) A^{T}
b) $(\bar{A})^{T}$
c) $-A^{T}$
d) $-(\bar{A})^{T}$
6. The set $S=\left\{1, x, x^{2}, x^{3}\right\}$ span which of the following?
a) P_{3}
b) R
c) R^{3}
d) M_{33}
7. Let $u=(1,-2)$ be a vector in R^{2} with the Euclidean inner product, then $\|u\|$ is
a) 1
b) 5
c) $\sqrt{5}$
d) $\sqrt{3}$
8. If A is a matrix with 6 columns and $\operatorname{rank}(A)=2$, then $N u l l i t y ~(A)$ is
a) 2
b) 4
c) 0
d) None of these
9. If $\lambda_{1}=2, \lambda_{2}=6$ are the eigen values of the matrix A, then the eigen values of A^{T} are
a) $2 \& 6$
b) $\frac{1}{2} \& \frac{1}{6}$
c) $4 \& 36$
e) None of these
10. The product of the eigen values of matrix $A=\left[\begin{array}{ccc}4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1\end{array}\right]$ is,
a) -5
b) 10
c) 5
d) -10
(b) Choose the appropriate answer for the following MCQs.
11. Let $I: V \rightarrow V$ be an identity operator, then $\operatorname{ker}(I)$ is,
a) V
b) $\{0\}$
c) 0
d) None of these
12. The mapping $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x, y, 0)$ is called as
a) Projection
b) Reflection
c) Rotation
d) Magnification
13.

If $f_{1}=x$ and $f_{2}=\sin x$, then Wronskian $W\left(\frac{\pi}{2}\right)=$ \qquad
a) $\frac{\pi}{2}$
b) 1
c) 0
d) -1
4. If $\vec{r}=x i+y j+z k$, then divergence of \vec{r} is
a) 2
b) -2
c) 3
d) -3
5. The value of $\operatorname{curl}(\operatorname{grad} \phi)$, where $\phi=2 x^{2}-3 y^{2}+4 z^{2}$ is
a) $4 x i-6 y j+8 z k$
b) $4 x-6 y+8 z$
c) 6
d) $\overrightarrow{0}$
6. The weighted Euclidean inner product $\langle u, v\rangle=3 u_{1} v_{1}+2 u_{2} v_{2}$ is the inner product on R^{2} generated by
a) $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$
b) $\left[\begin{array}{cc}\sqrt{3} & 0 \\ 0 & \sqrt{2}\end{array}\right]$
c) $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
d) $\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]$
7. If V is a finite-dimensional vector space, and $T: V \rightarrow V$ is a linear operator and $\operatorname{ker}(T)=\{0\}$, then
a) $R(T) \neq V$
b) T is one-to-one
c) $\operatorname{Nullity}(T) \neq 0$
d) None of these
Q. 2 (a) Convert the following matrix in to reduced row echelon form and hence find the rank of a matrix.
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$
(b) Solve the following system of equations by Gauss Elimination method
$x_{1}-2 x_{2}+3 x_{3}=-2$
$-x_{1}+x_{2}-2 x_{3}=3$
$2 x_{1}-x_{2}+3 x_{3}=-7$
(c) (i) Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$ using Gauss Jordan

Method

(ii) For what choices of parameter the following system is consistent.
$x_{1}+x_{2}+2 x_{3}+x_{4}=1$
$x_{1}+2 x_{3}=0$
$2 x_{1}+2 x_{2}+3 x_{3}=\lambda$
$x_{2}+x_{3}+3 x_{4}=2 \lambda$
Q. 3 (a) Consider the vectors $u=(1,2,-1)$ and $v=(6,4,2)$ in R^{3}. Show that $w=(9,2,7)$ is a linear combination of u and v.
(b) Determine a basis for and the dimension of the solution space of the homogeneous system

$$
\begin{aligned}
& 2 x_{1}+2 x_{2}-x_{3} \quad+x_{5}=0 \\
& -x_{1}-x_{2}+2 x_{3}-3 x_{4}+x_{5}=0 \\
& x_{1}+x_{2}-2 x_{3}-x_{5}=0 \\
& x_{3}+x_{4}+x_{5}=0
\end{aligned}
$$

(c) Show that the set of all pairs of real numbers of the form $(1, x)$ with the operations $(1, y)+\left(1, y^{\prime}\right)=\left(1, y+y^{\prime}\right)$ and $k(1, y)=(1, k y)$ is a vector space.
Q. 4 (a) Sketch the unit circle in an $x y$-coordinate system in R^{2} using

1. The Euclidean inner product $\langle u, v\rangle=u_{1} v_{1}+u_{2} v_{2}$.
2. The weighted Euclidean inner product $\langle u, v\rangle=\frac{1}{9} u_{1} v_{1}+\frac{1}{4} u_{2} v_{2}$.
(b) Attempt the following.
3. Let $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ be vectors in R^{2}. Verify that the weighted Euclidean inner product $\langle u, v\rangle=3 u_{1} v_{1}+2 u_{2} v_{2}$ satisfies the four inner product axioms.
4. Let R^{4} have the Euclidean inner product. Find the cosine of the angle θ between the vectors $u=(4,3,1,-2)$ and $v=(-2,1,2,3)$.
(c) Consider the vector space R^{3} with the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors $u_{1}=(1,1,1), u_{2}=(0,1,1) \& u_{3}=(0,0,1)$ into an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$; then normalize the orthogonal basis vectors to obtain an orthonormal basis $\left\{q_{1}, q_{2}, q_{3}\right\}$.
Q. 5 (a) Let $T: P_{1} \rightarrow P_{2}$ be the linear transformation defined by $T(p(x))=x(p(x))$. Find the matrix for T with respect to the standard bases $B=\left\{u_{1}, u_{2}\right\}$ and $B^{\prime}=\left\{v_{1}, v_{2}, v_{3}\right\}$, where $u_{1}=1, u_{2}=x ; v_{1}=1, v_{2}=x, v_{3}=x^{2}$.
(b)

Express $\left[\begin{array}{ccc}4+2 i & 7 & 3-i \\ 0 & 3 i & -2 \\ 5+3 i & -7+i & 9+6 i\end{array}\right]$ as the sum of a Hermitian and a skew-
(c) State the Dimension theorem for Linear Transformation and find the rank and nullity
of T_{A}, where $T_{A}: R^{6} \rightarrow R^{4}$ be multiplication by
$A=\left[\begin{array}{cccccc}-1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7\end{array}\right]$
Q. 6 (a)

Determine the algebraic and geometric multiplicity of $\left[\begin{array}{lll}{\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \text {. }}\end{array}\right.$
(b) For the matrix $A=\left[\begin{array}{cc}-4 & -6 \\ 3 & 5\end{array}\right]$, find the nonsingular matrix P and the diagonal matrix D such that $D=P^{-1} A P$.
(c) Determine A^{-1} by using Cayley-Hamilton theorem for the matrix
$A=\left[\begin{array}{ccc}1 & 3 & 2 \\ 0 & -1 & 4 \\ -2 & 1 & 5\end{array}\right]$. Hence find the matrix represented by $A^{8}-5 A^{7}-A^{6}+37 A^{5}+A^{4}-5 A^{3}-3 A^{2}+41 A+3 I$
Q. 7 (a) Show that $F=\left(y^{2}-z^{2}+3 y z-2 x\right) i+(3 x z+2 x y) j+(3 x y-2 x z+2 z) k$ is both solenoidal and irrotational.
(b) Find the work done when a force $F=\left(x^{2}-y^{2}+2 x\right) \hat{i}-(2 x y+y) \hat{j}$ moves a particle in the $x y$-plane from $(0,0)$ to $(1,1)$ along the parabola $y^{2}=x$. Is the work done different when the path is the straight line $y=x$?
(c) State Green's theorem and use it to evaluate the integral $\iint_{c} y^{2} d x+x^{2} d y$, where C is the triangle bounded by $x=0, x+y=1, y=0$.

