\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER- 1st / 2nd (NEW) • EXAMINATION - SUMMER 2016

Subject Code: 2110014
Date:02/06/2016
Subject Name: Calculus
Time: 02:30 PM to 05:30 PM
Total Marks: 70

Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining Sixquestions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 1

Objective Question (MCQ)

(a) Choose the most appropriate answer out of the following options given for each part of the question:

1. The sum of the series $1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\cdots$ is \qquad
(A) $2 / 3$
(B) $3 / 2$
(C) $1 / 2$
(D) None of these
2. The series $x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots$ represent expansion of \qquad
(A) $\sin x$
(B) $\cos x$
(C) $\sinh x$
(D) $\cosh x$
3. The value of the $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$ is \qquad
(A) 1
(B) -1
(C) 0
(D) None of these
4. The curve $r=\cos 2 \theta$ has \qquad petals.
(A) 2
(B) 4
(C) 3
(D) None of these.
5. If $x=r \cos \theta, y=r \sin \theta$, then $\frac{\partial(r, \theta)}{\partial(x, y)}=$ \qquad
(A) r
(B) $1 / r$
(C) 0
(D) None of these
6. If $u=x^{3} \cos (y / x)$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$ \qquad
(A) u
(B) $2 u$
(C) $3 u$
(D) None of these
7. The equation of a cylindrical surface $x^{2}+y^{2}=9$ becomes \qquad when converted to cylindrical polar coordinates.
(A) $r=9$
(B) $r^{2}=9$
(C) $r= \pm 3$
(D) $r=3$
(b) Choose the most appropriate answer for the following questions:
8. The series $\sum_{n=1}^{\infty} \frac{1}{(\log n)^{n}}$ is \qquad
(A) oscillatory
(B) divergent
(C) convergent
(D) None of these
9. If in the equation of a curve, x occurs only as an even power then the curve is symmetrical about
(A) x-axis
(B) y-axis
(C) Origin
(D) None of these
10. The value of the $\lim _{x \rightarrow 0}(\cos x)^{\cot x}$ is \qquad
(A) 0
(B) 1
(C) ∞
(D) None of these
11. The integral $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$ if \qquad
(A) f is an odd function
(B) f is neither even nor odd function
(C) f is an even function
(D) None of these
12. The volume of the solid generated by revolving the region between the y-axis and the curve $x=2 \sqrt{y}, 0 \leq y \leq 4$, about the y-axis.
(A) 2π
(B) 32π
(C) 16π
(D) None of these
13. $\int_{0}^{2} \int_{0}^{x^{2}} e^{y / x} d y d x$ is equal to \qquad
(A) $e^{2}-1$
(B) e^{2}
(C) $e^{2}+1$
(D) e^{-2}
14. A point (a, b) is said to be a saddle point if at (a, b)
(A) $r t-s^{2}>0$
(B) $r t-s^{2}=0$
(C) $r t-s^{2}<0$
(D) $r t-s^{2} \geq 0$
Q. 2 (a) Expand $\tan \left(\frac{\pi}{4}+x\right)$ in powers of x by using the Taylor's series. Also, find the value of $\tan 44^{\circ}$.
(b) Evaluate: $\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)^{\tan x}$.
(c) (1) Test for convergence the series $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots, x>0$.
(2) Trace the curve $r^{2}=a^{2} \sin 2 \theta$.
Q. 3 (a) If $\theta=t^{n} e^{-\frac{r^{2}}{4 t}}$ then find n so that $\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \theta}{\partial r}\right)=\frac{\partial \theta}{\partial t}$.
(b) Determine the continuity of the function $f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right) & , \quad(x, y) \neq(0,0) \\ 0 \quad, & (x, y)=(0,0)\end{cases}$ at origin.
(c) (1) If $u=\tan ^{-1}\left(x^{2}+2 y^{2}\right)$, show that $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=2 \sin u \cdot \cos 3 u$
(2) If $u=f\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$, show that $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=0$.
Q. 4 (a) Find the extreme values of the function $f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$.
(b) Find the equation of the tangent plane and the normal line of the surface $\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3$ at $(-2,1,-3)$.
(c) (1) Show that the rectangular solid of maximum volume that can be inscribed in
a sphere is cube.
(2) Expand $x y^{2}+x y+3$ in powers of $(x-1)$ and $(y+2)$ using Taylor's series expansion.
Q. 5 (a) Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{\sqrt{n+1}}$
(b) Test the convergence of the series $\sum_{n=1}^{\infty} \sqrt{n^{4}+1}-\sqrt{n^{4}-1}$.
(c) (1) Define geometric series and show that the geometric series is:
(i) convergent if $|r|<1$, (ii) divergent if $r \geq 1$
(2) Express $(x-1)^{4}+2(x-1)^{3}+5(x-1)+2$ in ascending power of x.
Q. 6 (a) Evaluate $\iint_{R}(x+y) d y d x$, where $R \quad$ is the region bounded by 04 $x=0, x=2, y=x, y=x+2$.
(b) Evaluate $\iint_{R} r^{3} \sin 2 \theta d r d \theta$ over the area bounded in the first quadrant between the circles $r=2$ and $r=4$.
(c) (1) Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z d z d x d y$
(2) Evaluate $\lim _{x \rightarrow \frac{\pi}{2}}(\cos x)^{\frac{\pi}{2}-x}$.
Q. 7 (a) Find the volume of the solid generated by revolving the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ about the x-axis.
(b) Find the area lying inside the circle $r=a \sin \theta$ and outside the cardioid $r=a(1-\cos \theta)$.
(c) (1) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$ by changing the order of integration.
(2) Check the convergence of $\int_{0}^{5} \frac{1}{x^{2}} d x$.
