Seat No.:

Enrolment No.__

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER 1st / 2nd EXAMINATION (NEW SYLLABUS) - SUMMER - 2017

Subject Code: 2110014 Date:01/06/2017

Subject Name: Calculus

Time: 2:30 PM to 05:30 PM **Total Marks: 70**

Instructions:

- 1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	Objective Question (I	MCO)
1.y	Objective Question (1	VICQ)

Mark

(a) Choose the appropriate answer for the following question. **07**

- 1.
 - (A) Divergent
 - (B) Convergent (C) Oscillation (D) None of these
- 2. represent expansion of _____. The series
 - (A)
- (B) $\log (1 + x)$ (C) $\sin x$
- (D) cos x
- 3. The value of the
 - (A) 2
- (B) 1
- (C) -1
- (D)
- 4. Asymptote parallel to y-axis of the curve $y = \frac{3}{100}$ is the line .
 - (A) x = 0
- (B) y = 0
- (C) x = 2
- (D) y = 2
- 5. $f(x) = \|x\|$ is at origin.
 - (B) discontinuous (C) differentiable (D) None of these (A) continuous
 - Curve $y^2(a + x) = x^2(b x)$ is symmetric about _____.
 - (A) x axis

6.

- (B) y axis
- (C) line x = b (D) line x = -a
- The curve increases strictly in the interval in which 7.
 - (A) < 0
- (B) > 0
- (C) = 0
- (D) None of these
- **(b)** Choose the appropriate answer for the following question.

07

1.

(A) 0

- (C)
- (D)
- 2. What does the region
- - (A) rectangle
- (B) square

(B) -

- (C) circle
- (D) triangle

3. The values of the

- (A) 0
- (B) 1
- (C) -1
- (D)

	4.	The function $f(x,y) = x^2y f(y/x)$ is homogeneous of degree is					
		(A) 0	(B) 1	(C) 2	(D) 3		
	5.	The equation	n of the form f(x	(xy) = c, then $ =$	·		
		(A) -	(B)	(C) - c	(D) (v)		
	6.	The values	of In In (32°	232 deals is	·		
		(A) 0	(B) 1	(C) - 1	(D)		
	7.	If $x = u + 3v$	v, y = v - u then	the values of	is		
		(A) 4	(B) −1	(C) 5	(D) 7		
Q.2	(a)	Expand log	(sec x) in power	of x.		04	
	(b)	Evoluata liik	m (11* 4· 2* 4· 3*) m (3	i. :		03	
				_ "		0.4	
	(c)		e curve $y^2(2a - x)$			04 03	
		(11) determin		onverge or diverg	es.	03	
Q.3	(a)	If f(v, v,) = v,	2v + vv2 than f	indf (1.2) andf (1.2) by definition	04	
Ų.S	(a)			·	1,2) by definition.		
	(b)	24.		following function	on at (0,0)	03	
		$f(x,y) = x^{x_{\parallel}}$	$(0, y) \neq (0, y)$	0)			
		=0,	(x,y) = (0,0))			
	(c)	(i) if u = ::::::::::::::::::::::::::::::::::	n ji ji ji ji the	en find the values	of & + y and	04	
		(=) == ==	``xx2 -#- yx2 **		g/x g, å.		
		14. 25 M	·#- Lay öbiöy ·#-	J 24.			
		(ii) if u =	then sho	w that will will	- ‰n. - : : 24nt	03	
		(11) 11 4	: #- 63 [%] : # 63 [%]	dx " dg "	iotre		
Q.4	(a)	Find the ext	reme values of x	$x^3 + 3xy^2 - 3x^2 - 3$	$3y^2+4.$	04	
	(b)	Find the equ	uation of the tan	gent plane and no	ormal line to the surface $2x^2 +$	03	
		$y^2 + 2z = 3$	at (2, 1, -3)				
	(c)	(i) Find a p	oint on the plan	e 2x + 3y - z	= 5 which is nearest to the	04	
		origin.					
		(ii) Expaned	d 🚟 in power of	f x - 1 and $y - 1$	ising Taylor's expansion.	03	

Q.5	(a)	Test for the convergence the series;	04
	(b)	Test for the convergence the series;	03
		$\sum_{n \in [n]}^{\infty} \ [\sqrt[2n]{n} n^{23} \cdot \ \cdot \] \ + \ n \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	(c)	(i) Determine absolute or conditional convergence of the series;	04
		$\sum_{n=1}^{\infty} \frac{1}{(1-i1)^n} \frac{ne^{2i}}{ne^{2i}} \cdot \frac{1}{1-11}$	
		(ii) Test the convergence for $3 + \frac{300}{5} + \frac{300}{5} + \frac{300}{25} + \frac{300}{25} + \dots$	03
Q.6	(a)	Evaluate $\text{Fr} \text{ and } \text{ over the upper half of the circle } r = acos 3$.	04
	(b)	Sketch the region of integration and evaluate	03
		$\int_0^\infty \int_0^{ds} \frac{s}{s} \frac{s}{s} \frac{s}{s}$ distills .	
	(c)	(i) Evaluate the integral by changing the order of	04
		integration.	
		(ii) Evaluate the integral of the second of	03
Q.7	(a)	Find the area included between the curve $y^2(2a - x) = x^3$ and its asymptote.	04
	(b)	Find the volume of a solid generated by revolving the cardioid	03
		$r = a(1 + \cos \theta)$ about the initial line.	
	(c)	Use triple integration to find the volume of the solid within the cylinder	07
		$x^2 + y^2 = 9$ between the planes $z = 1$ and $x + z = 1$.	

03 of 03
