\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER $1^{\text {st }} / \mathbf{2}^{\text {nd }}$ EXAMINATION (OLD SYLLABUS) - SUMMER - 2017

Subject Code: 110008

Subject Name: Maths-I
Time: 2:30 PM to 05:30 PM Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Attempt the following
(i) If $5 x \leq f(x) \leq 2 x^{2}+2, \forall x \in R$ then find $\lim _{x \rightarrow 2} f(x)$
(ii) Find c by the mean value theorem for $f(x)=\log x, x \in[1, e]$
(b) Attempt the following
(i) Evaluate $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$
(ii) Expand e^{x} in powers of $(x-1)$ by Taylor's series.
Q. 2 (a) Attempt the following
(i) Trace the curve $y^{2}(2 a-x)=x^{3}$04
$\begin{array}{ll}\text { (ii) } & \mathbf{0 3}\end{array}$
Check the convergence of $\int_{0} \frac{d x}{\sqrt{1-x}}$
(b) Attempt the following
(i) $\begin{array}{ll}\text { Check the convergence of } \int^{\infty} \frac{7 x+4}{x^{2}+9} d x & \mathbf{0 4}\end{array}$
(ii) Find the extreme values for $x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4 \quad 03$
Q. 3 (a) Attempt the following
(i) Does the sequence $\left\{\frac{3}{n+3}\right\}$ monotone?
(ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}+2 n+1}$
(b) Attempt the following
(i) Test the convergence of $\sum_{n=1}^{\infty} \frac{3^{n} n!}{n^{n}}$ by Ratio Test
(ii) Prove that the series $\sum_{n=1}^{\infty} \frac{n^{2}-1}{n^{2}+1}$ is divergent.
Q. 4 (a) If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$, show that $x u_{x}+y u_{y}=\sin 2 u$. Also prove that $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=2 \cos 3 u \sin u$.
(b) Attempt the following
(i) If $u=f(x-y, y-z, z-x)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
(ii) Find the equations of the tangent plane and normal line to the surface $x^{2}+2 y^{2}+3 z^{2}=12$ at $(1,2,-1)$.
Q. 5 (a) Attempt the following
(i) Expand $e^{x} \log (1+y)$ in powers of x and y.
(ii) Evaluate $\int_{\pi / 2}^{\pi} \int_{1}^{2} x \cos x y d y d x$
(b) Find a point on the plane $2 x+3 y-z=5$ which is nearest to the origin.

07
Q. 6 (a) Attempt the following
(i) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} e^{-y^{2}} d y d x$ by changing the order of integration.
(ii) Find the volume of the solid generated by revolving the region bounded by $y^{2}=x$ and the line $x=1$, about the line $x=1$.
(b) Attempt the following
(i) Evaluate $\int_{0}^{\log } \int_{0}^{x+\log y} \int_{0}^{x+y+z} e^{x+z} d z d y d x$
(ii) Find the constants $a, \quad b, \quad c$ so that $\mathbf{0 3}$ $\bar{F}=(x+2 y+a z) i+(b x-3 y-z) j+(4 x+c y+2 z) k$ is irrotational.
Q. 7 (a) Attempt the following
(i) Find the area of the loop of the curve $a y^{2}=x^{2}(a-x)$. 04
(ii) Determine curl \bar{F} at the point $(2,0,3)$ given that $\mathbf{0 3}$ $\bar{F}=z e^{2 x y} i+2 x y \cos y j+(x+2 y) k$.
(b) Attempt the following
(i) Using Green's theorem evaluate the integral $\oint_{c}\left[\left(2 x-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$, where C is the boundary in the $x y$-plane of the area enclosed by the x-axis and the semi-circle $x^{2}+y^{2}+1$ in the upper half xy-plane.
(ii) Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1)$.

