GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-II Examination June 2010

Subject code: 110009 Subject Name: Mathematics-II

Date: 23 /06 /2010

Time: 02.30 pm - 05.30 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Attempt any two:

06

i. Solve the following system for x, y and z:

$$-\frac{1}{x} + \frac{3}{y} + \frac{4}{z} = 30, \ \frac{3}{x} + \frac{2}{y} - \frac{1}{z} = 9, \ \frac{2}{x} - \frac{1}{y} + \frac{2}{z} = 10.$$

- ii. Find A^{-1} using row operations if $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.
- iii. Find the standard matrices for the reflection operator about the line y = x on R^2 and the reflection operator about the yz plane on R^3 .
- (b) Show that there is no line containing the points (1,1), (3,5), (-1,6) and (7,2).
- (c) i. Find all vectors in R^3 of Euclidean norm 1 that are orthogonal to the vectors $u_1 = (1,1,1)$ and $u_2 = (1,1,0)$.
 - ii. Find the rank of the matrix $A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & -2 & 6 \\ -6 & 3 & -8 \end{bmatrix}$ in terms of **02**

determinants.

iii. Is $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ in row-echelon or reduced row-echelon form?

Q.2

- (a) i. What conditions must b_1, b_2 and b_3 satisfy in order for $x_1 + 2x_2 + 3x_3 = b_1$, $2x_1 + 5x_2 + 3x_3 = b_2$, $x_1 + 8x_3 = b_3$ to be consistent?
 - ii. Is $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + 3y, y, z + 2x). 03 linear? Is it one-to-one, onto or both? Justify.
- (b) i. Show that the set $S = \{e^x, xe^x, x^2e^x\}$ in $C^2(-\infty, \infty)$ is linearly independent.
 - ii. Check whether $V = R^2$ is a vector space with respect to the operations $(u_1, u_2) + (v_1, v_2) = (u_1 + v_1 2, u_2 + v_2 3)$ and $\alpha(u_1, u_2) = (\alpha u_1 + 2\alpha 2, \alpha u_2 3\alpha + 3), \alpha \in R$.

(b) i. State only one axiom that fails to hold for each of the following sets W to be subspaces of the respective real vector space V with the standard operations:

$$[A]W = \{(x,y) | x^2 = y^2\},$$
 $V = R^2$

$$[B]W = \{(x,y) | xy \ge 0\},$$
 $V = R^2$

$$[C]W = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}, \qquad V = R^3$$

$$[D]W = \{A_{n \times n} \mid Ax = 0 \Rightarrow x = 0\}, \qquad V = M_{n \times n}$$

$$[E]W = \{f \mid f(x) \le 0, \forall x\}, \qquad V = F(-\infty, \infty)$$

ii. Check whether $S = \{\sin(x+1), \sin x, \cos x\}$ in $C(0, \infty)$ is linearly independent.

Q.3

(a) i. Determine whether the following polynomials span P_2 : $p_1 = 1 - x + 2x^2, \ p_2 = 5 - x + 4x^2, \ p_3 = -2 - 2x + 2x^2.$

ii. Show that
$$S = \{1 - t - t^3, -2 + 3t + t^2 + 2t^3, 1 + t^2 + 5t^3\}$$
 is linearly independent in P_3 .

- (b) i. Find a standard basis vector that can be added to the set $S = \{(-1,2,3),(1,-2,-2)\}$ to produce a basis of R^3 .
 - ii. Determine whether b is in the column space of A, and if so, express b as a linear combination of the column vectors of A if

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}.$$

- (c) i. If A is an $m \times n$ matrix, what is the largest possible value for its rank.
 - ii. Find the number of parameters in the general solution of Ax = 0 if A is a 5×7 matrix of rank 3.

OR

Q.3

- (a) i. Find basis and dimension of $W = \left\{ (a_1, a_2, a_3, a_4) \in R^4 \mid a_1 + a_2 = 0, a_2 + a_3 = 0, a_3 + a_4 = 0 \right\}.$
 - ii. Find a basis for the subspace of P_2 spanned by the vectors $1 + x, x^2, -2 + 2x^2, -3x$.
- (b) i. Reduce $S = \{(1,0,0), (0,1,-1), (0,4,-3), (0,2,0)\}$ to obtain a basis of R^3 .
 - Find a basis for the row space of A and column space of A if $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 0 \end{bmatrix}$ Also verify the dimension theorem for
- matrices.

 (c) Show that $S = \left\{ \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 2 \end{bmatrix} \right\}$ is a basis for M_{22} .

05

- (a) i. Compute d(f,g) for $f = \cos 2\pi x$ and $g = \sin 2\pi x$ in V = C[0,1] with inner product $\langle f,g \rangle = \int_{0}^{1} f(x)g(x)dx$.
 - ii. Find a basis for the orthogonal complement of the subspace of R^3 spanned by the vectors $v_1 = (1, -1, 3)$, $v_2 = (5, -4, -4)$ and $v_3 = (7, -6, 2)$.
- (b) i. Let $W = span\left\{\left(\frac{4}{5}, 0, \frac{-3}{5}\right), (0, 1, 0)\right\}$. Express w = (1, 2, 3) in

the form of $w = w_1 + w_2$, where $w_1 \in W$ and $w_2 \in W^{\perp}$.

- ii. Define algebraic and geometric multiplicity. Show that $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$ is not diagonalizable.
- (c) Show that P_3 and M_{22} are isomorphic.

Q. 4

- (a) i. Let R^3 have the Euclidean inner product. Transform the basis $S = \{(1,0,0), (3,7,-2), (0,4,1)\}$ into an orthonormal basis using the Gram-Schmidt process.
 - ii. For $U = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}$ and $V = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}$ in M_{22} , define $\langle U, V \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$. For the matrices A and B, verify Cauchy-Schwarz inequality and find the cosine of the angle between them, if $A = \begin{bmatrix} 2 & 6 \\ 1 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$.
- (b) i. Find the least squares solution of the linear system Ax = b and find the orthogonal projection of b onto the column space of $A \text{ where } A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & 2 \end{bmatrix} \text{ and } b = \begin{bmatrix} 7 \\ 0 \\ -7 \end{bmatrix}.$
 - ii. Find the transition matrix from basis $B = \{(1,0), (0,1)\}$ of R^2 to basis $B' = \{(1,1), (2,1)\}$ of R^2 .
- (c) For the matrix $A = \begin{bmatrix} \frac{1+i}{2} & \frac{1+i}{2} \\ \frac{1-i}{2} & \frac{-1+i}{2} \end{bmatrix}$, show that the row vectors form

an orthonormal set in C^2 . Also, find A^{-1} .

Q.5

(a) i. For the basis
$$S = \{v_1, v_2, v_3\}$$
 of R^3 , where $v_1 = (1,1,1)$, $v_2 = (1,1,0)$ and $v_3 = (1,0,0)$, let $T : R^3 \to R^3$ be a linear transformation such that $T(v_1) = (2,-1,4)$, $T(v_2) = (3,0,1)$, $T(v_3) = (-1,5,1)$. Find a formula for $T(x_1, x_2, x_3)$ and use it to find $T(2,4,-1)$.

ii. Let
$$T_1: M_{22} \to R$$
 and $T_2: M_{22} \to M_{22}$ be the linear transformations given by $T_1(A) = tr(A)$ and $T_2(A) = A^T$.
Find $(T_1 \circ T_2)(A)$ where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

(b) Find a matrix
$$P$$
 that diagonalizes $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, and hence find

 A^{10} . Also, find the eigenvalues of A^2 .

(c) Let $T: R^4 \to R^3$ be the linear transformation given by $T(x_1, x_2, x_3, x_4) = (w_1, w_2, w_3)$ where $w_1 = 4x_1 + x_2 - 2x_3 - 3x_4$, $w_2 = 2x_1 + x_2 + x_3 - 4x_4$, $w_3 = 6x_1 - 9x_3 + 9x_4$. Find bases for the range and kernel of T.

OR

Q.5

(a) Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 be the linear transformation defined by $T(x_1, x_2) = (x_2, -5x_1 + 13x_2, -7x_1 + 16x_2)$.
Find the matrix for the transformation T with respect to the bases

$$B = \{(3,1)^T, (5,2)^T\} \text{ for } R^2 \text{ and }$$

$$B' = \{(1,0,-1)^T, (-1,2,2)^T, (0,1,2)^T\} \text{ for } R^3.$$

(b) i. Let
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be defined by $T(x, y) = (x + y, x - y)$. Is T one-one? If so, find formula for $T^{-1}(x, y)$.

ii. Find eigenvalues of
$$A = \begin{bmatrix} -420 & \frac{1}{2} & 576 \\ 0 & 0 & 0.6 \\ 0 & 0 & \sqrt{3} \end{bmatrix}$$
. Is A

invertible?

(c) Translate and rotate the coordinate axes, if necessary, to put the conic $9x^2 - 4xy + 6y^2 - 10x - 20y = 5$ in standard position. Find the equation of the conic in the final coordinate system.

4