\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER $1^{\text {st }} / 2^{\text {nd }}$ EXAMINATION (OLD SYLLABUS) - SUMMER - 2017

Subject Code: 110015

Date:29/05/2017
Subject Name: Vector Calculus \& Linear Algebra (VCLA)
Time: 2:30 PM to 05:30 PM

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a)
(1) Find rank of a matrix $A=\left[\begin{array}{cccc}1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1\end{array}\right]$
(2) Find inverse of $\mathrm{A}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 1 & 3 & 5 & 7\end{array}\right]$ using row operations.
(b) (1) Solve the system by Gauss Elimination method:

$$
4 x+y+2 z=12,2 x-3 y+8 z=20,-x+11 y+4 z=33
$$

(2) Show that $\mathrm{A}=\left[\begin{array}{ccc}\lceil\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \\ \cos \theta & -\sin \theta & 0\end{array}\right]$ is orthogonal and find its inverse.
Q. 2 (a) Verify Green's theorem for $\oint_{c}[(y-\sin x) d x+\cos x d y]$: where C is the plane triangle enclosed by the lines $\mathrm{y}=0, \mathrm{x}=\pi / 2, y=2 x / \pi$
(b) (1) Prove that vector $F=\left(y^{2}-z^{2}+3 y z-2 x\right) i+(3 x z+2 x y) j+(3 x y-2 x z+2 z) k$ is $\mathbf{0 4}$ irrotational.
(2) Find directional derivative of the function $f(x, y, z)=x^{2}+3 y^{2}+z^{2}$ at the point $\mathrm{P}(2,1,3)$ in the direction of the vector $\mathrm{i}-2 \mathrm{k}$
Q. 3 (a) Prove that the set R^{+}of all positive real numbers with operations $\mathrm{x}+\mathrm{y}=\mathrm{xy}$ and 07 $k x=x^{k}$ is a vector space.
(b) (1) Find the basis for $\mathrm{V}=\operatorname{span}(\mathrm{S})$ for the
subset $S=\left\{(1,2,3,-1,0),(3,6,8,-2,0),(-1,-1,-3,1,1),(-2,-3,-5,1,1)\right.$ of R^{5}.
(2) Express the polynomial $x^{2}+4 x-3$ as a linear combination of $x^{2}-2 x+5,2 x^{2}-3 x$, $\mathrm{x}+3$.
Q. 4 (a) $T: R^{4} \rightarrow R^{3}$ is a linear transformation defined by
$T(x, y, z, w)=(4 x+y-2 z-3 w, 2 x+y+z-4 w, 6 x-9 z+9 w)$.Find basis for the kernel and range of T and verify dimension theorem.
(b) (1) Consider the basis $S=\{u, v, w\}$ for R^{3}, where $u=(1,2,1), v=(2,9,0)$ and $\mathrm{w}=(3,3,4) . T: R^{3} \rightarrow R^{2}$ is a linear transformation such that $\mathrm{T}(\mathrm{u})=(1,0)$, $\mathrm{T}(\mathrm{v})=(-1,1)$ and $\mathrm{T}(\mathrm{w})=(0,1)$. Find formula for $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and use it to find $\mathrm{T}(1,2,-1)$
(2) $T: R^{3} \rightarrow R^{3}$ is a linear operator such that
$T(x, y, z)=(3 x+y,-2 x-4 y+3 z, 5 x+4 y-2 z)$. Show that T is one to one and also find $\mathrm{T}^{-1}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Q. 5 (a) Using Gram Schmidt process, construct an orthonormal basis for R^{3} whose

07
basis is the set $\{(2,1,3),(1,2,3),(1,1,1)\}$
(b) (1) $f(t)=4 t+1$ and $g(t)=2 t^{2}+1$ be the polynomial with inner product
$\langle\mathrm{f}, \mathrm{g}\rangle=\int_{0}^{1} f(t) g(t) d t$. Find angle between f and g .
(2) Verify Pythagorean theorem for the vectors

03
$u=(3,0,1,0,4,-1)$ and $v=(-2,5,0,2,-3,-18)$
Q. 6 (a)
(1) Find eigen values and basis for eigen spaces of $A=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$
(2) Determine algebraic multiplicity of eigen values of $\mathbf{0 3}$
$A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
(b)

$$
\text { Verify Cayley Hamilton theorem for } \mathrm{A}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \text { and find } \mathrm{A}^{-1}
$$

Q. 7 (a) (1) Find unit normal vector to the surface $x^{2}+2 y^{2}+z^{2}=7$ at $(1,-1,2)$
(2) If $\mathrm{F}=3 \mathrm{xyi}-\mathrm{y}^{2} \mathrm{j}$, evaluate $\int F . d r$, where C is the arc of parabola $\mathrm{y}=2 \mathrm{x}^{2}$ from 04 $(0,0)$ to $(1,2)$
(b) (1) Determine whether the vectors $\mathrm{x}=(1,-2,3) \quad \mathrm{y}=(5,6,-1) \quad \mathrm{z}=(3,2,1)$ form linearly dependent set or linearly independent set.
(2) Show that every square matrix can be expressed as the sum of symmetric and skew symmetric matrix.

