Seat No.: _____

Instructions:

Q.1

Subject Code: 2110015

Time: 2:30 PM to 05:30 PM

Subject Name: Vector Calculus & Linear Algebra

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Objective Question (MCQ)

Enrolment No.____

Date:29/05/2017

Total Marks: 70

Mark

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER 1^{st} / 2^{nd} EXAMINATION (NEW SYLLABUS) - SUMMER - 2017

1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.

	(a)		07
	1.	Let A be a non singular matrix of order $n \times n$ then $ adj A $ is equal to (a) 0 (b) 1 (c) 2 (d) $ A ^{n-1}$	
	2.	Let A be a skew symmetric matrix of odd order then $ A $ is equal to	
		(a) 0 (b) 1 (c) 2 (d) -1	
	3.	The maximum possible rank of a singular matrix of order 3 is	
		(a) 0 (b) 1 (c) 2 (d) 3	
	4.	Let A be a square matrix of order n with rank r where $r < n$, then the number of	
		independent solutions of the homogeneous system of equation $AX = 0$ is	
		(a) n (b) r (c) $n - r$ (d) 1	
	5.	The dimension of the polynomial space P_3 is	
		(a) 1 (b) 2 (c) 3 (d) 4	
	6.	Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x, y) = (3x, 3y)$ then	
		T is classified as	
		(a) Reflection (b) Magnification (c) Rotation (d) Projection	
	7.	Let T: $\mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = (y, -x, 0)$ then	
		the dimension of $R(T)$ is	
		(a) 0 (b) 1 (c) 2 (d) 3	
	(b)		07
		The product of the eigen values of $\begin{bmatrix} 1 & 4 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{bmatrix}$ is	
	1.	The product of the eigen values of $\begin{bmatrix} 0 & 2 & 5 \end{bmatrix}$ is	
		$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$	
	_	(a) 1 (b) 2 (c) 3 (d) 4	
	2.	Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ then the eigen values of $A + 3I$ are	
		(a) 1, 3 (b) 2, 4 (c) 4, 6 (d) 2, 3	
	3.	Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x, y) = (y, x)$ then it is	
	J.	(a) One to one (b) Onto (c) Both (d) Neither	
	4		
	4.	For vectors u and v , $ u + v ^2 - u - v ^2$ is	
	_	(a) $< u, v >$ (b) $2 < u, v >$ (c) $3 < u, v >$ (d) $4 < u, v >$	
	5.	If $ u + v ^2 = u ^2 + v ^2$, then the vectors u and v are	
	((a) Parallel (b) Orthogonal (c) dependent (d) Co linear The magnitude of the maximum directional derivative of the function	
	6.		
		2x + y + 2z at the point $(1, 0, 0)$ is	
	7	(a) 0 (b) 1 (c) 2 (d) 3	
	7.	For vector point function \vec{F} , divergence of \vec{F} is obtained by	
		(a) $\nabla \cdot \vec{F}$ (b) $\nabla \times \vec{F}$ (c) $\nabla \vec{F}$ (d) $\nabla^2 \vec{F}$	
		$\begin{bmatrix} 4 & 2 & -3 \end{bmatrix}$	
Q.2	(a)	Express the matrix $\begin{bmatrix} 4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & 7 \end{bmatrix}$ as a sum of a symmetric and a	03
		L-5 0 7 J	
		skew–symmetric matrix. http://www.guja	ratetudy com
		nup.//www.guja	u aistudy.COIII

Q.7

[2 1 3] 3 1 2 using Gauss Jordan method Find the inverse of 04 Determine the values of k, for which the equations (c) **07** 3x - y + 2z = 1, -4x + 2y - 3z = k, and $2x + z = k^2$ possesses solution. Find the solutions in each case. Show (9, 2, 7) as a linear combination of (1, 2, -1) and (6, 4, 2)03 Q.3 Find a basis for the null space of $\begin{bmatrix} 2 & -1 & -2 \\ -4 & 2 & 4 \\ -8 & 4 & 8 \end{bmatrix}$ **(b)** 04 Check whether the set of all ordered pairs of real numbers (x, y) with the (c) **07** operations defined as $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and k(x, y) = (2kx, 2ky) is a vector space. If not, list all the axioms which are not satisfied. Check whether the vectors 1, sin^2x and cox2x are linearly dependent or **03 Q.4** independent. Find the eigen values and eigen vectors of $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ Verify Cayley Hamilton theorem for $\begin{bmatrix} 6 & -1 & 1 \\ -2 & 5 & -1 \\ 2 & 1 & 7 \end{bmatrix}$ and hence find A⁻¹ **(b)** 04 **07** and A^4 . (a) Verify parallelogram law for $\begin{bmatrix} -1 & 2 \\ 6 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$ under the Euclidean 03 **Q.5** inner product on M₂₂ (b) Let V be an inner product space. Prove that if u and v are orthogonal unit 04 vectors of V then $||u-v|| = \sqrt{2}$. **07** Let R^3 have Euclidean inner product. Transform the basis $S = \{ u_1, u_2, u_3 \}$ into an orthonormal basis using Gram Schmidt process, where $u_1 = (1, 0, 0)$, $u_2 = (3, 7, -2)$ and $u_3 = (0, 4, 1)$. Check whether T: $\mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + 3y, y, 2x + z) is linear. **Q.6 07** Is it one to one and onto? Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by **07** T(x, y) = (y, -5x + 13y, -7x + 16y). Find the matrix for T with respect to the bases $B_1 = \{ u_1, u_2 \}$ for R^2 and $B_2 = \{ v_1, v_2, v_3 \}$ for R^3 , where $u_1 = (3, 1)$, $u_2 = (5, 2), v_1 = (1, 0, -1), v_2 = (-1, 2, 2)$ and $v_3 = (0, 1, 2)$.

Find the directional derivative of $xy^2 + yz^3$ at the point (2, -1, 1). 03 If $\vec{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ 04 then show that \overrightarrow{F} is both solenoidal and irrotational.

Verify Green's theorem for $\oint_C (3x - 8y^2)dx + (4y - 6xy)dy$ where C is (c) 07 the boundary of the triangle with vertices (0, 0), (1, 0) and (0, 1). *****

http://www.gujaratstudy.com