\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER $1^{\text {st }} / \mathbf{2}^{\text {nd }}$ EXAMINATION (NEW SYLLABUS) - SUMMER - 2017

Subject Code: 2110015

Date:29/05/2017

Subject Name: Vector Calculus \& Linear Algebra Time: 2:30 PM to 05:30 PM

Total Marks: 70 Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. $1 \quad$ Objective Question (MCQ)

(a)

1. Let A be a non singular matrix of order $n \times n$ then $|\operatorname{adj} A|$ is equal to
(a) 0
(b) 1
(c) 2
(d) $|A|^{n-1}$
2. Let A be a skew symmetric matrix of odd order then $|A|$ is equal to
(a) 0
(b) 1
(c) 2
(d) -1
3. The maximum possible rank of a singular matrix of order 3 is
(a) 0
(b) 1
(c) 2
(d) 3
4. Let A be a square matrix of order n with rank r where $r<n$, then the number of independent solutions of the homogeneous system of equation $\mathrm{AX}=0$ is
(a) n
(b) r
(c) $\mathrm{n}-\mathrm{r}$
(d) 1
5. The dimension of the polynomial space P_{3} is
(a) 1
(b) 2
(c) 3
(d) 4
6. Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation defined by $T(x, y)=(3 x, 3 y)$ then T is classified as
(a) Reflection
(b) Magnification (c)
(c) Rotation
(d) Projection
7. Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation defined by $T(x, y, z)=(y,-x, 0)$ then the dimension of $R(T)$ is
(a) 0
(b) 1
(c) 2
(d) 3
(b)
8. The product of the eigen values of $\left[\begin{array}{lll}1 & 4 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 2\end{array}\right]$ is
(a) 1
(b) 2
(c) 3
(d) 4
9. Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ then the eigen values of $A+3 I$ are
(a) 1,3
(b) 2,4
(c) 4,6
(d) 2, 3
10. Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation defined by $T(x, y)=(y, x)$ then it is
(a) One to one
(b) Onto
(c) Both
(d) Neither
11. For vectors u and $v,\|u+v\|^{2}-\|u-v\|^{2}$ is
(a) $\langle u, v\rangle$
(b) $2\langle u, v\rangle$
(c) $3\langle u, v\rangle$
(d) $4\langle u, v\rangle$
12. If $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$, then the vectors u and v are
(a) Parallel
(b) Orthogonal
(c) dependent
(d) Co linear
13. The magnitude of the maximum directional derivative of the function $2 x+y+2 z$ at the point $(1,0,0)$ is
(a) 0
(b) 1
(c) 2
(d) 3
14. For vector point function \vec{F}, divergence of \vec{F} is obtained by
(a) $\nabla \cdot \vec{F}$
(b) $\nabla \times \vec{F}$
(c) $\nabla \vec{F}$
(d) $\nabla^{2} \vec{F}$
Q. 2 (a) Express the matrix $\left[\begin{array}{ccc}4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & 7\end{array}\right]$ as a sum of a symmetric and a
(b) Find the inverse of $\left[\begin{array}{lll}2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3\end{array}\right]$ using Gauss Jordan method

04 07
$3 x-y+2 z=1,-4 x+2 y-3 z=k$, and $2 x+z=k^{2}$ possesses solution. Find the solutions in each case.
Q. 3 (a) Show (9, 2, 7) as a linear combination of $(1,2,-1)$ and $(6,4,2)$

$$
03
$$

(b) Find a basis for the null space of $\left[\begin{array}{ccc}2 & -1 & -2 \\ -4 & 2 & 4 \\ -8 & 4 & 8\end{array}\right]$

$$
04
$$ operations defined as $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ and $\mathrm{k}(\mathrm{x}, \mathrm{y})=(2 \mathrm{kx}, 2 \mathrm{ky})$ is a vector space. If not, list all the axioms which are not satisfied.

Q. 4 (a) Check whether the vectors $1, \sin ^{2} x$ and $\cos 2 x$ are linearly dependent or independent.
(b) Find the eigen values and eigen vectors of $\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right]$
(c) Verify Cayley Hamilton theorem for $\left[\begin{array}{ccc}6 & -1 & 1 \\ -2 & 5 & -1 \\ 2 & 1 & 7\end{array}\right]$ and hence find A^{-1} and A^{4}.
Q. 5 (a) Verify parallelogram law for $\left[\begin{array}{cc}-1 & 2 \\ 6 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right]$ under the Euclidean inner product on M_{22}
(b) Let V be an inner product space. Prove that if u and v are orthogonal unit vectors of V then $\|u-v\|=\sqrt{2}$.
(c) Let R^{3} have Euclidean inner product. Transform the basis $\mathrm{S}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}$ into an orthonormal basis using Gram Schmidt process, where $u_{1}=(1,0,0)$, $u_{2}=(3,7,-2)$ and $u_{3}=(0,4,1)$.
Q. 6 (a) Check whether $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x+3 y, y, 2 x+z)$ is linear. Is it one to one and onto ?
(b) Let $T: R^{2} \rightarrow R^{3}$ be a linear transformation defined by
$T(x, y)=(y,-5 x+13 y,-7 x+16 y)$. Find the matrix for T with respect to the bases $B_{1}=\left\{u_{1}, u_{2}\right\}$ for R^{2} and $B_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ for R^{3}, where $u_{1}=(3,1)$, $\mathrm{u}_{2}=(5,2), \mathrm{v}_{1}=(1,0,-1), \mathrm{v}_{2}=(-1,2,2)$ and $\mathrm{v}_{3}=(0,1,2)$.
Q. 7 (a) Find the directional derivative of $\mathrm{xy}^{2}+\mathrm{yz}^{3}$ at the point (2, -1, 1).
(b) If $\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) i+(3 x z+2 x y) j+(3 x y-2 x z+2 z) k$ 04 then show that \vec{F} is both solenoidal and irrotational.
(c) Verify Green's theorem for $\oint_{C}\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is 07 the boundary of the triangle with vertices $(0,0),(1,0)$ and $(0,1)$.

