\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

 B.PHARM - SEMESTER- VIII • EXAMINATION - SUMMER-2016

 B.PHARM - SEMESTER- VIII • EXAMINATION - SUMMER-2016}

Subject Code:2280017
Date: 10/05/2016
Subject Name: Elementary Mathematics
Time: 10:30 AM to 1:30 PM
Instructions:
Total Marks: 80

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Solve the following equations:

$$
\begin{aligned}
& \text { 1. } \sqrt{4 x+1}+\sqrt{x+1}=3 \\
& \text { 2. } \frac{1}{x+1}+\frac{1}{x+2}=\frac{1}{x+3}
\end{aligned}
$$

(b) Solve the simultaneous equations $x+y=8$ and $x^{2}+5 x+y=4$.
(c) Give the general forms of quadratic equation. Also show that if the sum of the roots of the equation $\frac{1}{x+a}+\frac{1}{x+b}=\frac{1}{a}$ is zero then the product of the root is $-\frac{1}{2}\left(a^{2}+b^{2}\right)$.
Q. 2 (a) Solve the following simultaneous equations using Cramer's rule:
$x+y+z=6$
$x-y+z=2$
$2 x+y-z=2$
(b) Using theorems prove that $\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|=x y z(x-y)(y-z)(z-x)$
(c) If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]_{\text {then prove that } A^{2}-5 A+7 I=0}$
Q. 3 (a) Find the area of quadrilateral with vertical (3, 2) ($-3,4$) ($-2,-3$) and ($2,-2$). 06
(b) Find the equation of line through the points $(2,3)$ and $(5,-2)$.
(c) Find the sum of first 11 terms of A.P. 2, 6, 10, 14....
Q. 4 (a) Find the standared deviation for the following data.

Class	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Freq.	3	61	132	153	140	51	2

(b) If A, B and C are exhaustive and mutually exclusive events and
$2 P(A)=3 P(B)=4 P(C)$, then find $P(A \cup C)$.
(c) A club has 10 male and 8 female members. A committee composed of 3 men and 4 women is formed. In how many ways can this be done?
Q. 5 (a) Find the middle term in the expansion of $(1+\sqrt{x})^{20} 06$
(b) Find the limit if exits
$\lim _{x \rightarrow 3} \frac{\sqrt{x^{2}+7}+\sqrt{3 x-5}}{x+2}$
(c) The bacteria in a culture grow by 7% in the first hour, decrease by 6% in the second hour and again increase by 5% in the third hour. If at the end of third hour the count bacteria are 11270000 , find the original count of bacteria in the sample.
$\frac{\frac{1}{2} \log 16-\frac{1}{3} \log 8}{\log 4}=\frac{1}{2}$
2. In triangle $\mathrm{ABC}, \quad \cos A=\frac{3}{5}$ find $\sin A$ and $\tan \mathrm{A}$
(b) 1. Prove that
$\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
2. Evaluate following Integration.
$\int \frac{1+\sin x}{1+\cos x} d x$
(c) Find $\frac{d y}{d x}$ for $x=3 \cos \theta-2 \cos ^{3} \theta, y=3 \sin \theta-2 \sin ^{3} \theta$
Q. 7 (a) If $x^{y}=e^{x-y}$, prove that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$
(b) Evaluate the following integrals
$\int \frac{d x}{1+\sqrt{x+1}}$
(c) Differentiate

$$
\left(\frac{1+x}{1-x}\right)_{\text {W. r. }}{ }^{x}
$$

