Seat No.:	Enrolment No.:
Seat No	Linding it ind

GUJARAT TECHNOLOGICAL UNIVERSITY

DIPLOMA ENGINEERING – SEMESTER –III • EXAMINATION – SUMMER 2016 Subject Code: 330503 Date: 24-11-2016

Subject Name: Industrial Stoichiometry

Time: 10:30 AM To 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Each question carry equal marks (14 marks)
- 5. Atomic Weight: C=12, N= 14, O=16 S= 32,H=1,

Q.1	(a)	(i)Define: work and force(4 marks) (ii)Explain STP and NTP (3 marks)	07
	(b)	Justify the importance of Stoichiometry in chemical Industry.	07
Q.2	(a)	Prove that mole% = Volume % = Pressure %	07
_	(b)	580 grams of acetic acid is mixed with 2 liter of water. Find weight ratio and	07
		mole ratio of acetic acid.	
		OR	
	(b)	For Ideal Gas Prove that PV=nRT	07
Q.3	(a)	Derive: $Cp - Cv = R$	07
_	(b)	If 80 kg of Crystal containing 8.2% moisture is dried to 0.6 % moisture.	07
		Calculate the amount of water evaporated.	
	OR		
Q.3	(a)	320 kg Nitrobenzene is prepared from benzene and nitric acid. Calculate	07
		amount of benzene and nitric acid required.	
	(b)	Convert 392 grams per liter sulphuric acid in to Normality and Molarity	07
Q.4	(a)	A solution of ethyl alcohol (C ₂ H ₅ OH) containing 30% alcohol is fed at the rate	07
		of 1600 kg/hr to a distillation column. The top contains 95% alcohol. The	
		residue contains 4% alcohol. Calculate percentage loss of alcohol in residue.	
	(b)	Calculate the standard heat of reaction:	07
		$4 \text{ NH}_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$	
		Enthalpy of formation ΔH_{f^0} are NH ₃ (g)= -46.2, NO(g)= +90.3,	
		$H_2O(g) = -241.6 \text{ KJ/gmol}$	
		OR	
Q.4	(a)	How much heat must be added in order to raise the temperature of 10 kmol	07
		water from 250 °K to 350 °K at 1 atm. Take average specific heat of water 1	
		Kcal/Kg ° C.	
	(b)	Describe System of units like MKS, CGS, SI, FPS briefly	07
Q.5	(a)	A sample of groundnut seeds contains 45% oil, 40% solids and rest moisture.	06
		After extraction, cake composition is 80 % solids, 5% oil and rest moisture.	
		Find % recovery of oil.	
	(b)	Define (i) Recycle (ii) Bypass (iii) Conversion (iv) Yield	08
		OR	
Q.5	(a)	Find value of gas constant R, take number of moles in gm mole, pressure in	07
		atm, volume in cm ³ and temperature in ⁰ K. Assume that at STP 1 g mole gas	
		occupies 22.4 liter.	
	(b)	Derive equation for heat of reaction.	07