\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY DIPLOMA ENGINEERING - SEMESTER -III • EXAMINATION - WINTER 2016

Subject Code: 3330604Subject Name: Structural MechanicsTime: 10:30 AM To 01:00 PM

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Each question carry equal marks (14 marks)
Q. 1 (a) Define the following terms:

Date: 24/11/2016

Total Marks: 70

Instructions:
 Instructions:

(1) Normal stress. (2) Linear strain. (3) Elastic limit. (4) Modulus of elasticity.
(5) Poisson's ratio. (6) Bulk Modulus. (7) Shear stress.
(b) A member 2 m long and 100 wide and 50 mm thick in section is acted upon by an axial tensile force of 100 kN . If $\mathrm{E}=2 \times 10^{5} \mathrm{kN} / \mathrm{mm}^{2}$ and $\mu=0.25$; find out change in length; breadth and thickness.
Q. 2 (a) Draw stress - strain curve for mild steel and explain the following terms: 07
(1) Proportional limit. (2) Elastic limit. (3) Yield stress. (4) Ultimate stress.
(b) A circular R. C. C. column of 250 mm diameter is reinforced with 6 bars of 20 mm diameter. The column is carrying an axial compressive load of 850 kN . Find stress induced in concrete and steel. Modular ratio $\left(\mathrm{E}_{s} / \mathrm{E}_{\mathrm{c}}\right)=18$.

OR

(b) A weight of 40 kN falls on a vertical steel rod from a height of 20 mm . If the $\mathbf{0 7}$
length of rod is 3 m and its cross section area is $1250 \mathrm{~mm}^{2}$, find instantaneous
stress developed in bar and also calculate strain energy stored.
Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
Q. 3 (a) (1) State and explain parallel axis theorem. 03
(2) Define section modulus. 02
(3) Define radius of gyration. 02
(b) A specimen has modulus of rigidity $6 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$ and modulus of elasticity 07 $1.5 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Determine the Poisson's ratio of the material.

OR

Q. 3 (a) Find moment of inertia about centroidal axes of I section consist of top and 07 bottom flange $100 \mathrm{~mm} \times 15 \mathrm{~mm}$ and web of size $10 \mathrm{~mm} \times 230 \mathrm{~mm}$.
(b) (1) What is pure bending? Write assumptions made in pure bending. 04
(2) Define shear force and bending moment at section. $\mathbf{0 3}$
Q. 4 (a) A simply supported beam of span 6 m , carries an u.d.l. of $1 \mathrm{kN} / \mathrm{m}$ over entire span and two point loads 2 kN and 6 kN at 2 m and 4 m from left support. Calculate the value of maximum bending moment and draw S. F. and B. M. diagram.
(b) A simply supported beam has span 4 m and $250 \mathrm{~mm} \times 400 \mathrm{~mm}$ cross section. It carries an u.d.l. of $20 \mathrm{kN} / \mathrm{m}$ over entire span. Find maximum bending stress and draw stress distribution diagram.
Q. 4 (a) A cantilever beam, 2 m span, carries a u.d.l. of $2 \mathrm{kN} / \mathrm{m}$ over a length of 1 m07 from fixed end and a point load of 2 kN at free end. Draw S. F. and B. M. diagram.
(b) A cantilever beam of span 3 m is loaded with u.d.l. of $40 \mathrm{kN} / \mathrm{m}$ over its entire length. The cross section of beam is 200 mm wide and 400 mm deep. Draw shear stress distribution diagram for the section having max. shear force.
Q. 5 (a) A 4 m long pipe having one end fixed and other end hinged is used as a column. It has outer diameter 40 mm and inner diameter 20 mm . For pipe material $\mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{f}_{\mathrm{c}}=320 \mathrm{~N} / \mathrm{mm}^{2}$. Find (a) Buckling load by Eular's formula (b) Crippling load by Rankine's formula , Rankine's constant $\alpha=1 / 7500$.
(b) Determine forces in all members of cantilever truss loaded as shown in Fig. 1 by method of joint.

OR

Q. 5 (a) Define truss and state assumptions made in the analysis of trusses. 07
(b) Determine forces in all members of simply supported truss loaded as shown in Fig. 2 by graphical method.

ગુજરાતી
પ્ર尺્વ．૧ अ 09
બ Oง
પ્રશ્ન．₹ અ OงબOง
અથવા
બ O૭
પ્ર尺્ક． 3 अ 09
બ 09
અથવા
પ્રશ્વ． 3 અ 09બ$0 ง$
પ્ર尺્વ．૪ અ O૭બOง
અથવા
પ્રશ્વ．૪ અ 09
બ $0 ง$
પ્રશ્વ． 4 અ 09
બ $0 ง$
અથવા
પ્રશ્ક．પ અ Oง
G Oง

Fig. 1

