\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 Diploma Engineering - SEMESTER-IV • EXAMINATION - SUMMER • 2015

Subject Code: 340601
 Subject Name: Mechanics of Structure - II
 Time: 10:30 am - 01:00 pm

Date: 04-05-2015

Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. English version is considered to be Authentic.
Q. 1 (a) Distinguish between simply supported beam and fixed beam.
(b) A fixed beam of 5 m span is subjected to a central point load of 40 kN and a u.d.l. $20 \mathrm{kN} / \mathrm{m}$ over entire span. Draw S.F. and B.M. diagrams.
Q. 2 (a) What are different methods to find out slope and deflection at a section in a 07
loaded beam? Explain any one of them in detail.

(b) A simply supported beam 3 m long carries a point load W at its centre. If the
slope at the ends of beam is not to exceed 1°, find the deflection at the centre
of beam.

OR

(b) A cantilever beam of span 2 m has an allowable deflection of 2 mm at free end.
If $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and size of beam is $230 \mathrm{~mm} \times 450 \mathrm{~mm}$, find the value of
point load which can be placed at free end.
Q. 3 (a) Explain Clapeyron's theorem of three moments with neat sketch.
(b) A continuous beam $A B C$ is simply supported at $A, B, \& C$. Span $A B$ is 5 m long and carries a central point load of 40 kN . Span BC is 6 m long and carries a u.d.l. of $16 \mathrm{kN} / \mathrm{m}$ over entire span of BC. Determine support moments using Theorem of three moments and draw S.F. and B.M. diagrams.

OR

Q. 3 (a) Define stiffness of beam. State factors affecting stiffness of beam.
(b) A continuous beam ABC is simply supported at $\mathrm{A}, \mathrm{B}, \& \mathrm{C} . \mathrm{AB}$ is 4 m long and carries a u.d.l. of $30 \mathrm{kN} / \mathrm{m}$ on entire span AB . BC is 5 m long and carries a u.d.l. of $40 \mathrm{kN} / \mathrm{m}$ on entire span of BC. Draw S.F. and B.M. diagram for the beam by using Clapeyron's theorem of three moments.
Q. 4 (a) Explain Stiffness Factor and Distribution Factor giving equations for different 07
(b) A continuous beam ABC is simply supported at A, B and C such that $\mathrm{AB}=3.6 \mathrm{~m}$ and $\mathrm{BC}=4.8 \mathrm{~m}$. It carries a u.d.l. of $60 \mathrm{kN} / \mathrm{m}$ over full length. Using moment distribution method, draw B.M. diagram for the beam. Consider EI = constant.

OR

Q. 4 (a) Explain Principle Planes and Principle Stresses.
(b) At a certain point in a strained material two stresses of intensities of perpendicular to each other. Determine analytically Normal, Tangential and Resultant stresses on a plane inclined at 40° with the plane of major stress.
Q. 5 (a) Explain different end conditions of column and effective length with sketches. 07
(b) A hollow C.I. column of 30 mm external and 20 mm internal diameters is used as a column 4 m long with both the ends hinged. Find the Rankine's safe load
with factor of safety 4. Take $\sigma_{c}=560 \mathrm{~N} / \mathrm{mm}^{2}$ and Rankine's constant as 1/1600.

OR
Q. 5 (a) Draw 'Core' for the following sections:
(1) Square (2) Rectangular (3) Circular (4) Hollow circular
(b) A concrete dam of rectangular section is 16 m high, 6.5 m wide, contains water up to a height of 14 m . Find max. and min. intensities of stresses at the base. Take unit weight of concrete as $25 \mathrm{kN} / \mathrm{m}^{3}$.

