| Seat No.: | Enrolment No.: | |-----------|----------------| |-----------|----------------| Subject Code: 3350505 **Instructions:** Time:02:30 PM TO 05:00 PM ## GUJARAT TECHNOLOGICAL UNIVERSITY DIPLOMA ENGINEERING – SEMESTER – V- EXAMINATION – SUMMER 2016 **Subject Name: CHEMICAL ENGINEERING THERMODYNAMICS** Date:23/05/2016 **Total Marks: 70** | | 1.
2.
3.
4. | Make suitable assumptions wherever necessary.Figures to the right indicate full marks. | | | |-----------|----------------------|---|--|----| | Q.1 | | | Answer any seven out of ten. દશમાંથી કોઇપણ સાતના જવાબ આપો. | 14 | | | | 1. | Define Energy with unit. | | | | | ٩. | એનર્જી ની વ્યાખ્યા યુનીટ સાથે લખો. | | | | | 2.
२. | Define Enthalpy with unit.
એન્થાલ્પીની વ્યાખ્યા યુનીટ સાથે લખો. | | | | | 3. | Define Kinetic Energy with unit. | | | | | 3. | કાયનેટીક એનર્જી ની વ્યાખ્યા યુનીટ સાથે લખો. | | | | | 4. | Write statement of zeorth and first law of thermodynamic. | | | | | ٧. | થર્મોડાયનેમિક્સ નો ઝીરોથ તથા પ્રથમ નિયમ લખો. | | | | | 5. | Write equation of ideal gas law with their nomenclature. | | | | | ч. | આદર્શ વાયુંનુ સમીકરણ તેમના પદ સાથે લખો. | | | | | 6. | Write the Van der Waals equation for real gas behavior. | | | | | ۶.
- | રીયલ ગેસ બીફેવીયર મટેની Van der Waals નું સુત્ર લખો. | | | | | 7. | Define standard heat of combustion and standard heat of formation. Standard heat of combustion અને standard heat of formation ની વ્યાખ્યા લખો. | | | | | ა .
8. | | | | | | ٥.
د. | Write equation of work done for an ideal gas in constant volume process.
આદર્શ વાયું માટે અયળ કદ પ્રકીયા માટે work done નુ સુત્ર લખો. | | | | | 9. | Write value of Temperature and Pressure of triple point of water. | | | | | ۶.
۴. | પાણી ના ટ્રિપલ પોઇટનુ તાપમાન અને પ્રેસર લખો. | | | | | 10. | What is thermodynamic temperature scale? | | | | | ۹٥. | Thermodynamic temperature scale & &? | | | Q.2 | | (a) | Explain phase rule. | 03 | | પ્રશ્ન. ર | (| (અ) | ફેઝ નિયમ સમજાવો. | 03 | | | | | OR | | | | | (a) | Calculate the degree of freedom for system of liquid water, liquid toluene (immiscible) in equilibrium with its vapors. | 03 | | | (| (અ) | જ્યારે liquid water, liquid toluene (અદ્રાવ્ય) જો તેની vapor સાથે equilibrium માં | 03 | | | | | હ્રોય ત્યારે આ પ્રણાલી માટે degree of freedom ગણો. | | | | | (b) | A closed system executes adiabatic process due to which a change in internal energy takes place. A work of 20 kJ is done by the system on surroundings | 03 | | | | | 1/4 | | | | (બ) | during this process. Determine change of specific internal energy of the system if system contains mass of 0.5 kg.
બંધ પ્રાણાલી જ્યારે એડીયાબેટીક પ્રક્રીયા કરે છે ત્યારે આંતરીક ઉર્જા મા ફેરફાર
થાય છે. આ પ્રક્રીયા દરમીયાન 20 kJ જેટલું કાર્ચ પ્રણાલી દ્વારા વાતાવરણમાં | 03 | |-----------|-------------|--|----| | | | થાય છે. જો પ્રણાલી 0.5 કીલો માસ ધારવે તો change of specific internal energy
શોધો. | | | | | OR | | | | (b) | A system contains 15 kg of a gas. During a process 9.5 kJ work is done on the system and 39.5 kJ heat is rejected from the system. Find change of specific internal energy of the system | 03 | | | (બ) | એક પ્રણાલી 15 કીલો વાયુ ધરાવે છે. પ્રક્રીયા દરમીયાન 9.5 kJ જેટલુ કાર્ય | 03 | | | | પ્રાણાલી ઉપર કરવામાં આવે છે અને 39.5 kJ જેટલી ઉષ્માં ફેકવામા આવે છે તો | | | | | change of specific internal energy શોધો. | | | | (c) | Explain PVT behavior of pure fluids. | 04 | | | (§) | શુધ્ધ પ્રવાહી માટે PVT વર્તણુક સમજાવો. | OX | | | (c) | OR Discuss limitations of first law of thermodynamics. | 04 | | | (8) | First law of thermodynamics ની મર્યાદાઓ વર્ણવો. | 08 | | | (d) | Calculate standard heat of reaction at 25°C of the following reaction | 04 | | | | Na ₂ CO _{3 (s)} + Fe ₂ O _{3 (s)} \rightarrow Na ₂ O.Fe ₂ O _{3 (s)} + CO _{2 (g)} , using following data Standard heat of formation of Na ₂ CO _{3 (s)} = -1130.68 kJ/mol Standard heat of formation of Fe ₂ O _{3 (s)} = -817.3 kJ/mol Standard heat of formation of Na ₂ O.Fe ₂ O _{3 (s)} = -1412.2 kJ/mol Standard heat of formation of CO _{2 (g)} = -393.51 kJ/mol | | | | (S) | 25^{0} C એ $Na_{2}CO_{3 (s)} + Fe_{2}O_{3 (s)} \rightarrow Na_{2}O.Fe_{2}O_{3 (s)} + CO_{2 (g)}$ of standard heat of | ٥x | | | | reaction શોધો. | | | | | Standard heat of formation of $Na_2CO_{3 (s)} = -1130.68 \text{ kJ/mol}$
Standard heat of formation of $Fe_2O_{3 (s)} = -817.3 \text{ kJ/mol}$
Standard heat of formation of $Na_2O.Fe_2O_{3 (s)} = -1412.2 \text{ kJ/mol}$
Standard heat of formation of $CO_{2 (g)} = -393.51 \text{ kJ/mol}$
OR | | | | (d) | Calculate the change in enthalpy between reactants and products if both are at 25° C and if 9 mol of ethylene oxide is produced by following reaction $C_2H_{4~(g)} + \frac{1}{2} O_{2~(g)} \rightarrow C_2H_4O_{(g)}$, using following data Standard heat of formation of $C_2H_{4~(g)} = 52.50$ kJ/mol Standard heat of formation of $C_2H_4O_{(g)} = -52.63$ kJ/mol | 04 | | | (S) | પ્રકીયક અને નીપજ વચ્ચેની change in enthalpy ગણો જો બન્ને 25ºC અને 9 mol | ٥٨ | | | | ethylene oxide ઉત્પન થાય. $C_2H_{4~(g)} + \frac{1}{2}O_{2~(g)} \rightarrow C_2H_4O_{(g)}$
Standard heat of formation of $C_2H_{4~(g)} = 52.50~kJ/mol$
Standard heat of formation of $C_2H_4O_{(g)} = -52.63~kJ/mol$ | | | Q.3 | (a) | What is Clausius inequality? | 03 | | પ્રશ્ન. 3 | (અ) | Clausius inequality શું છે? | 03 | | | | OR | | | | (a) | If a Carnot engine receives heat at 900 K and rejects heat at 500 K, what is its thermal efficiency? | 03 | | | (અ) | જો Carnot engine 900 K એ ઉષ્મા મેળવે અને 500 K એ ફેંકે છે. તો તેની | 03 | | | | thermal efficiency શોધો ? | | |-----------|--------------|---|-----| | | (b) | Explain thermodynamic equilibrium state. | 03 | | | (બ) | Thermodynamic equilibrium state સમજાવી. | 03 | | | | OR | | | | (b) | Draw the neat sketch of turbine system and show boundary and state type of system. | 03 | | | (બ) | Turbine system ની સ્વય્છ આકુતી દોરો, તેની સીમા બતાવો અને પ્રણાલીના
પ્રકાર લખો. | 03 | | | (c) | Derive equation for first law of thermodynamic for flow process. | 04 | | | (8) | First law of thermodynamic માટે flow process સમજાવી.
OR | ٥X | | | (c) | Discuss heat pump with a neat diagram. | 04 | | | (8) | Heat pump ની સ્વચ્છ આકુતી દોરી સમજાવો. | ٥X | | | (d) | Explain effects of temperature on heat of reaction. | 04 | | | (S) | Heat of reaction પર તાપમાન ની અસર સમજાવો. | ٥X | | | | OR | | | | (d) | Explain the importance of entropy in thermodynamics. | 04 | | | (S) | થર્મોડાયનેમીક્સમાં entropy નુ મહત્વ સમજાવો. | ٥x | | Q.4 | (a) | Write equation of polytropic process and show graph for various values of n. | 03 | | પ્રશ્ન. ૪ | (અ) | Polytropic process નુ સુત્ર લખો અને n ની જુદીજુદી કીંમત માટે ગ્રાફ દોરો. | 03 | | | | OR | | | | (a) | Using Hess's law, calculate heat of formation of Benzoic acid crystals $(C_7H_6O_2)$ at 25^0C using following data:
Standard heat of formation of CO_2 (g) = -393.51 kJ/mol
Standard heat of formation of H_2O (l) = -285.83 kJ/mol
Standard heat of combustion of $C_7H_6O_2$ = -3226.95 kJ/mol | 03 | | | (અ) | Hess's law નો ઉપયોગ કરી, Benzoic acid crystals (C7H6O2) ની heat of | 03 | | | | formation 25ºC એ નીચેની માફીતી નો ઉપયોગ કરી ગણો. | | | | | Standard heat of formation of CO_2 (g) = -393.51 kJ/mol
Standard heat of formation of H_2O (l) = -285.83 kJ/mol
Standard heat of combustion of $C_7H_6O_2$ = -3226.95 kJ/mol | | | | (b) | Explain Kelvin-Plank statement for second law of thermodynamics. | 04 | | | (બ) | Second law of thermodynamics માટે Kelvin-Plank statement સમજાવો. | ٥x | | | | OR | | | | (b) | Explain Clausius statement for second law of thermodynamics. | 04 | | | (બ) | Second law of thermodynamics માટે Clausius statement સમજાવી. | ٥X | | | (c) | 9 kg of air has volume 9.7 m³ when it is at temperature 35°C. If it is compressed at constant pressure up to temperature 350°C, find heat transfer, change in internal energy and work done. Take R=0.287 kJ/kg K and Cv=0.718 kJ/kg K | 07 | | | (8) | $9~\mathrm{kg}$ વાયુ નું કદ $9.7~\mathrm{m}^3$ છે જ્યારે તેનુ તાપમાન $35^{\mathrm{o}}\mathrm{C}$ છે. જો તેને અયળ દબાણે | 0.9 | | | | 350°C સુધીદબાવવામા આવે તો heat transfer, change in internal energy and | | | | | work done શોધો. R=0.287 kJ/kg K અને Cv=0.718 kJ/kg K લી. | | | Q.5 | (a) | For an ideal gas, derive equation of work done for constant temperature process. | 04 | |-----------|-------------|---|----| | પ્રશ્ન. પ | (અ) | Ideal gas માટે, constant temperature process માટે work done તારવો. | ٥x | | | (b) | What is the change in entropy when 1 mol of an ideal gas at 335 K and 10 bar is expanded irreversibly to 300 K and 1 bar? Take Cp = 29.3 J/mol K, R=8.314 J/mol K જો 1 mol આદર્શ વાયુ 335 K અને 10 bar શી 300 K and 1 bar સુધી irreversibly | 04 | | | (બ) | expand થાય તો change in entropy શોધો? $Cp = 29.3 \text{ J/mol K અને R} = 8.314 \text{ J/mol K લી.}$ | O& | | | (c) | Prove $Cp - Cv = R$ for an ideal gas from the definition of enthalpy. | 03 | | | (8) | Enthalpy ની વ્યાખ્યા ઉપરથી Ideal gas માટે Cp – Cv =R તારવો. | 03 | | | (d) | Define extensive properties with examples. | 03 | | | (S) | Extensive properties ની વ્યાખ્યા ઉદાહરણ સહીત લખો. | 03 | *****