Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY DIPLOMA ENGINEERING – SEMESTER – V • EXAMINATION – SUMMER 2016

Subje	ect C	ode: 2350202 Date: 11/05/2016	
Time Instru	: 02: ctions:	ame: Vehicle Dynamics 30 PM TO 05:00 PM Total Marks: 70 inpt all questions.	
3.	Figu	e suitable assumptions wherever necessary. res to the right indicate full marks. question carry equal marks (14 marks)	
Q.1	(a)	Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The masses are 16 Kg, 14 Kg, 18 Kg and 19 Kg respectively and their radii of rotations are 70 mm, 60 mm, 50 mm and 40 mm. the angular position of the masses B, C and D are 70°, 120° and 270° from the mass A. find the magnitude and position of the balancing mass at radius of 100 mm.	07
પ્રશ્ન.	અ	યાર માસ A, B, C અને D એક જ શાફ્ટ પર એક જ પ્લેન મા ફરે છે. તેઓ	07
٩		અનુક્રમે 16 Kg, 14 કિગ્રા, 18 કિગ્રા અને 9 કિગ્રા છે. તેમની રોટેશન ત્રિજયા	
		70 mm, 60 mm, 50 mm અને 40 mm છે. અને તેમના કોણિય સ્થાન માસ A	
		ની સાપેક્ષ મા 70°,120° અને 70° છે. જો બેલેંસિંગ માસ ની ત્રિષ્ટ્યા 100 mm	
		હોય તો તેનુ મુલ્ય અને દિશા શોધો.	
	(b)	Explain with deriving equation (1) swaying couple (2) hammer blow	0.9
	બ	સમીકરણ તરવી સમજાવો	09
		(અ) સ્વેઇંગ કપલ (બ) હેમર બ્લો	
Q.2	(a)	Explain Ackermann steering mechanism and write equations for turning circle radii for all four wheels.	07
પ્રશ્ન.	અ	આકર્મેન સ્ટિચરિંગ પ્રિસિપલસમજાવી,યાર વ્હિલો ના ટર્નિંગ સર્કલ રેડિયસ ના	07
ર		સમિકરણો લખો.	
	(b)	Explain vibration with single degree of freedom.	0.9
	બ	સિંગલ ડીગ્રી ફ્રીડમ સાથે વાઇબ્રેશન સમજાવો.	0.9
		OR	
	(b)	Define (1) frequency (2) amplitude (3) resonance (4) damping (5) free vibration (6) forced vibration (7) cycle	07
	બ	વ્યાખ્યા આપો (1) ફ્રિક્વંસિ (2) એમ્પ્લિટ્યુડ (3) રેજોનંસ (4) ડેમ્પિંગ (5) ફ્રી	

વાઇબ્રેશન(6) ફોર્સ વાઇબ્રેશન (7) સયકલ	વાઇબ્રેશન(6)	ફોર્સ	વાઇબ્રેશન	(7)	સથકલ	
---------------------------------------	--------------	-------	-----------	-----	------	--

Q.3	(a)	A track has pivot pins 1.37 m apart, the length of each arm is 0.18 m and the track rod is behind front axle and 1.27 m long. Determine the wheel base which will give true rolling for all wheels when the car is turning so that the inner wheel stub axle is 60° to the centre line of the car.	07
પ્રશ્ન.	અ	એક ટ્રેક ની પીવોટ પીન 1.37મી. અંતરે છે.દરેક આર્મ ની લમ્બાઇ 0.18 મી. છે.	07
3		ટ્રેક રોડ ફ્રંટ એક્ષલ ની પાછળ અને 1.27 મી. લામ્બો છે. જ્યારે કાર ટર્ન લે છે	
		ત્યારે કાર ની સેંટર લાઇન થી અંદર ના વ્હિલ ના સ્ટબ એક્ષલ 60º હોય અને દ્રેક	
		વ્હિલ નુ ટ્રુ રોલિંગ આપે તો વ્હિલ બેઝ શોધો.	
	(b)	Explain MacPherson strut type suspension system.	೦೨
	બ	મેકફ્શન સ્ટ્રટ ટાઇપ સસ્પેંશન સિસ્ટમ સમજાવો.	0.9
		OR	
Q.3	(a)	Derive an equation for balancing single rotating mass by two rotating masses in different plane.	07
પ્રશ્ન.	અ	સિંગલ રોટેટિંગ માસ નુ જુદા જુદા પ્લેન મા બે રોટેટિંગ માસ વડે થતુ	07
3		બેલેંસિંગ નુ સમિકરણ તરવો.	
	(b)	Differentiate between (1) hotch kiss drive and torque tube drive. (2) semi-floating and full-floating axles.	0.9
	બ	વર્ગિકરણ કરો (1) હ્રૉય કિસ ડ્રાઇવ – ટોર્ક ટ્યુબ ડ્રાઇવ (2) સેમી ફ્લોટિંગ – ફુલ	0.9
		ફ્લોટિંગ એક્ષલ	
Q.4	(a)	The outside diameter of a hollow cylindrical propeller shaft is 40 mm . Calculate the thickness of M.S. sheet required for the tubular section used. Given : Max.engine torque-191 N.m, First gear ratio-3.06, Max.permissible shear stress $50*10^3$ KPa	1e 07
પ્રશ્ન.	અ	હોલો સિલિંડ્રિકલ પ્રોપેલર શાફ્ટ નો બહાર નો ડાયમિટર 40 mm છે.તો M.S. શિટ	07
8		ના નળકાર સેક્શન માટે ની જડાઇ શોધો. મહત્તમ એંજિન ટોર્ક 191 N.m, ફ્રસ્ટ ગિયર	
		રેશિઓ 3.06, મહત્તમ શિયર સ્ટ્રેસ $50*10^3~\mathrm{KPa}$ છે.	
	(b)	Explain with equation (1) air resistance (2) rolling resistance (3) grade resistance	0.9
	બ	સમીકરણ સાથે સમજાવો. (1) એર રેઝિસ્ટંટ, (2) રોલિંગ રેઝિસ્ટંટ, (3) ગ્રેડ	೦೨
		રેઝિસ્ટંટ	
		OR	
0.4	(a)	Explain Bearing Load on front axle	07

પ્રશ્ન.	અ	ફ્રંટ એક્સલ પર નો બેરિંગ લોડ સમજાવો.	07
٧			
	(b)	Derive equations of max. Acceleration, max. tractive force and reactions for (i)front wheel,(ii) rear wheel drive.	0.9
	બ	મહત્તમ પ્રવેગ, મહત્તમ ટ્રેક્ટિવ એફર્ટ અને રિએક્શન મટે ના સમિકરણ (1) ફ્રંટ	೦೨
		િહ્લ અને (2) રિથર વ્હિલ માટે તાર્વો.	
Q.5	(a)	One motor car have rolling resistance 25 N/1000N, air rsistance 0.06V ² . If transmission efficiency in top gear is 88% and Weight of laden vehicle is 20,000 then calculate: (1) brake KW power when speed of car is 145km/hr, (2) brake KW power when speed of car is 50 km/hr, transmission efficiency is 80 % and car climbing the slop of 10.	07
પ્રશ્ન.	અ	એક મોટર કાર નો રોલિંગ રેઝિસ્ટંટ 25 N/1000N , એર રેઝિસ્ટંટ 0.06V² છે. જો	07
ų		ટ્રાંસમિશન ક્ષમતા ટોપ ગિયર મા 88% અને વહન નુ લેડનવજન 20,000 હોય	
		તો,(1) બ્રેક કિલો વોટપાવર કાર ની ઝડપ 145km/hr ફોય ત્યારે શોધો.	
		(3) બ્રેક કિલો વોટપાવર કાર ની ઝડપ 50 km/hr, ટ્રાંસમિશન ક્ષમતા 80%	
		અને કાર 10 નો ઢાળ યઢતી હોય ત્યારે શોધો.	
	(b)	List the various ergonomic features present in modern car.	0.9
	બ	આધુનિક કાર ના જુદી જુદી અર્ગોનોમિક વિષેષતાઓ ની યાદી બનાવો. OR	0.9
Q.5	(a)	Wheel base of a car is 2.5m. The height of C.G. is 0.6m from ground and it is located at 1.1m from rear axle. If the car is running at 85km/hr find the stopping distance in following case. Take µ=0.6. 1. Only rear wheels are braked. 2. Only front wheels are braked.	07
પ્રશ્ન.	અ	એક કાર નો વ્હિલ બેઝ 2.5m, સી.જી. ની ઉંચાઇ 0.6m અને પાછળ ની એક્ષલ	07
ų		થી 1.1m છે. જો કાર 85km/hr ની ઝડપે જતી હોય તો નીયેના કેસ માટે	
		સ્ટોપિંગ ડિસ્ટંસ શોધો. (1) માત્ર પાછળ ના વ્હિલો ને બ્રેકલગડતા, (2) માત્ર	
		આગળ ના વ્હિલો ને બ્રેકલગડતા.	
	(b)	Explain factors affecting human comfort.	೦೨
	બ	માનવિય આરામ ને અસર કરતા પરિબળો સમજાવો.	0.9
