Seat No.: Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

DIPLOMA ENGINEERING - SEMESTER - VI• EXAMINATION - SUMMER 2016

Subject Code: 3360503 Date: 23/05/2016

Subject Name: Chemical Reaction Engineering

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & Communication aids are strictly prohibited.
- 5. Use of only simple calculator is permitted in Mathematics.
- 6. English version is authentic.
- Q.1 Answer any seven out of ten. દશમાંથી કોઇપણ સાતના જવાબ આપો.
- 14

- 1. Define rate of reaction with equation.
- ૧. રેટ ઓફ રિઅક્સન ની વ્યાખ્યા સૂત્ર સાથે લખો.
- 2. List out factor affecting rate of reaction.
- ર. રેટ ઓફ રિઅક્સન અસર કરતા પરીબળો લખો.
- 3. Define order of reaction and rate constant.
- વ્યાખ્યા આપો ઓડેર ઓફ રિઅક્સન અને રેટ કોન્સટન્ટ.
- 4. Give unit for nth order reaction and also derive unit for first order reaction.
- ૪. nth ઓડેર રિઅક્સન ના એકમ લખો અને ફસ્ટ ઓડેર રિઅક્સન ના એકમ તારવો.
- 5. Define molecularity of reaction.
- ૫. મોલીક્યુલારીતી ઓફ રિઅક્સન ની વ્યાખ્યા આપો.
- 6. Define activation energy. Write Arrhenius equation.
- એક્ટીવેશન એનરજી ની વ્યાખ્યા આપો. આફૅનીયસ નો સૂત્ર લખો.
- 7. Draw graphical representation for first order reaction.
- ૭. ફસ્ટ ઓડેર રિઅક્સન માટે ગ્રાફીકલ રીપ્રૅઝન્ટેશન દોરવો.
- 8. Define half life time. Write half life time equation for first order reaction.
- Half life time નિ વ્યાખ્યા આપો. ફસ્ટ ઓડૅર રિઅક્સન માટે Half life time નુ સ્ત્ર લખો.
- 9. Give difference between CSTR and PFR.
- ૯. CSTR અને PFR વચ્ચે તફાવત આપો.
- 10. Define space time and space velocity.

	٩٥.	સ્પેસ ટાઈમ અને સ્પેસ વેલોસીટી ની વ્યાખ્યા આપો.	
Q.2 પ્રશ્ન. ૨	(a) (અ)	Explain importance of chemical reaction engineering. Chemical reaction engineering ના મહત્વો સમજાવો.	03
	(0)	OR	03
	(a) (અ)	Explain exothermic and endothermic reaction with example. એકસૉશરમીક અને એન્ડૉશરમીક રિઅક્સન ને ઉદાહરણ સાથે સમજાવો.	03
	(b)	Explain significance of activation energy.	03
	(છ) (બ)	એક્ટીવેશન એનરજી નો સિગ્નિફીકેન્સ સમજાવો.	03
	(',	OR	
	(b)	On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order.	03
	(બ)	રેટ સાદ્રતા ને ડબલ કરતા રેટ ઓફ રિઅક્સન ત્રણ ગણા છે. ત્યારે ઓડેર ઓફ	03
		રિઅક્સન શોધો.	
	(c)	Explain temperature dependency from Arrhenius equation.	04
	(8)	તાપમાન પર આધારીત આઠ્ઠનીયસ સૂત્ર સમજાવો. OR	08
	(c)	Give classification of chemical reaction and explain any one with example.	04
	(8)	રાસાયણિક સમીકણૉનુ વગ્રિકરણ આપો અને કોઇપણ એક સમજાવો ઉદાહરણ	OX
		સાથે	
	(d)	The rate constants of a certain reaction are $1.6*10^{-3}$ and $1.625*10^{-2}$ (s ⁻¹) at 10° C and 30° C. Calculate the activation energy.	04
	(S)	એક યોકક્સ સમીકરણનો દર અયળાંક ૧૦° સે. અને ૩૦° સે, તાપમાને	OX
		અનુકમે ૧.૬x૧૦-૩ અને ૧.૬૨૫x૧૦-૨ (સે) ^{-૧} છે તો ક્રિયાશીલ શક્તિ શોધો. OR	
	(d)	Differentiate between elementary and non-elementary reaction.	04
	(5)	એલિમેન્ટરી અને નોન એલિમેન્ટરી રિઅક્સન ના વચ્ચે તફાવત આપો.	08
Q.3	(a)	Derive $C_A = C_{AO} (1-X_A)$ for constant volume system.	03
પુક્ષ. 3	(અ)	ક્રોન્સટ્ન્ટ વૉલ્યુમ સીસટમ માટે $C_{A}=C_{AO}\left(1-X_{A}\right)$ તારવો. OR	03
	(a)	Derive the integrated rate equation for n th order reaction in terms of concentration.	03
	(અ)	n th ઓડેર રિઅક્સન માટે ઇન્ટીગ્રેટેડ રેટ ઈક્વેશન ને સાદ્રતા ના રૂપ મા	03
	(1.)	તારવી.	0.2
	(b)	Derive the integrated rate equation for zero order reaction in terms of concentration.	03
	(બ)	ઝીરો ઓડૅર રિઅક્સન માટે ઇન્ટીગ્રેટેડ રેટ ઈક્વેશન ને સાદ્રતા ના રૂપ મા	03

તારવો.

		OR	
	(b)	Derive the integrated rate equation for first order reaction in terms of concentration.	03
	(બ)	ફસ્ટ ઓડૅર રિઅક્સન માટે ઇન્ટીગ્રેટેડ રેટ ઈક્વેશન ને સાદ્રતા ના રૂપ મા	03
		તારવો.	
	(c)	Derive the integrated rate equation for first order reaction in terms of conversion and also find half life time.	04
	(8)	ફસ્ટ ઓડૅર રિઅક્સન માટે ઇન્ટીગ્રેટેડ રેટ ઈક્વેશન ને કનવરસન ના રૂપ મા	OX
		તારવો.	
		OR	
	(c)	Differentiate between differential and integral method for analysis of kinetic data.	04
	(8)	કાયનેટીક ના પુથકરણ માટે ની ડીફન્સીયલ અને ઇન્ટીગલ રીત ના વચ્ચે ના	08
		તફાવત આપો.	
	(d)	Explain CSTR in detail.	04
	(S)	CSTR ને સમજાવો.	08
		OR	
	(d)	Explain PFR in detail.	04
	(S)	PFR ને સમજાવો.	08
Q.4	(a)	Explain batch reactor along with its application.	03
પ્રશ્ન.	(અ)	બેય રીએકટર ને ઉપયોગીતાઑ સાથે સમજાવો.	03
٧			
		OR	
	(a)	Explain semi batch reactor along with its application.	03
	(અ)	સેમી બેય રીએકટર ને ઉપયોગિતાઑ સાથે સમજાવો.	03
	(b)	Derive the steady state performance equation for ideal batch reactor.	04
	(બ)	સ્થિર સ્થિતી એ Ideal batch reactor માટે પરફોમન્સ સૂત્ર તારવો. OR	OX
	(b)	Explain slurry reactor.	04
	(બ)	સ્લરી રીએકટર ને સમજાવો.	OX
	(c)	Derive the steady state performance equation for PFR.	07
	(8)	સ્થિર સ્થિતી એ PFR માટે પરફોમન્સ સૂત્ર તારવો.	೦೨
Q.5	(a)	Derive the steady state performance equation for CSTR.	04
પ્રશ્ન.	(અ)	સ્થિર સ્થિતી એ CSTR માટે પરફોમન્સ સૂત્ર તારવો.	OX

(b)	An isothermal batch reactor the conversion of a liquid reactor A is 70% in 13 min. Find the space time and space velocity in a mixed flow reactor. Consider first order kinetics.	04
(બ)	આઇસોથરમલ બેચ રીએકટરમા રીએકટન્ટ A ના સાદ્રતા ૭૦% છે. ૧૩	08
	મિનિટમા સ્પેસ ટાઈમ અને સ્પેસ વેલોસીટી શોધો મિક્સ ફલો રીએકડર	
	માટે.ધારો કે ફસ્ટ ઓડૅર રિઅક્સન.	
(c)	Explain fluidized bed reactor with figure.	03
(8)	ફલુડાઇઝડ બેડ રીએકટર ને સમજાવો.	03
(d)	Derive the integrated rate equation for second order reaction in terms of concentration.	03
(S)	સેકન્ડ ઓડૅર રિઅક્સન માટે ઇન્ટીગ્રેટેડ રેટ ઈક્વેશન ને સાદ્રતા ના રૂપ મા	03
	તારવો.	
