\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
MCA - SEMESTER- I EXAMINATION - Summer - 2016
Subject Code: 2610004Date: 11-05-2016
Subject Name: Fundamentals of Computer Organization Time: 02.30 pm to 05.00 pm Instructions:1. Attempt all questions.2. Make suitable assumptions wherever necessary.3. Figures to the right indicate full marks.
Q. 1 (a) Do as directed :
i. List main three parts of computer system. 01
ii. $1010100.01001-110000.01010=$

\qquad 01
iii. $(512.5)_{10}=($

\qquad
$)_{2}$. 01
iv. Perform : 412.7-409.2 using 9's complement method. 01
v. Perform : $0.1001-0.01101$ using 1's complement method. 01
vi. Convert : $(632.97)_{10}$ to its equivalent octal number. 01
vii. Convert : (101101111010) $)_{2}$ to its equivalent hex number. 01
(b) Do as directed :
i. Simplify: $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$ 02
ii. Simplify using K-map : $\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}$ 02
iii. De Morganize : $\left(\mathrm{A}(\mathrm{B}+\mathrm{C})\left(\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)\right)^{\prime}$ 02
iv. Give a dual of $\mathrm{X} .\left(\mathrm{X}^{\prime}+\mathrm{Y}\right)=\mathrm{X}$. Y 01
Q. 2 (a) Write a note on scanners. 07
(b) Explain Indirect and Relative Addressing mode with suitable example. 07
OR
(b) Explain Direct and Indexed Addressing mode with suitable example. 07
Q. 3 (a) What is Flip-flop? Explain SR flip-flop and its functionality. 07
(b) Explain 4×1 Multiplexer. 07
OR
Q. 3 (a) Explain working of 3-bit counter. 07
(b) Explain design of Half - Adder Circuit. 07
Q. 4 (a) Write a note of ROM. 07
(b) Explain Instruction word with suitable examples. 07
OR
Q. 4 (a) Write a note on Secondary Memories. 07
(b) Explain Instruction and Execution Cycle. 07
Q. 5 (a) Write the Boolean expression (in SOP form) for a logic network with 3 inputs 07 that will have a 1 output when $\mathrm{X}=1$ irrespective of values of $\mathrm{Y} \& \mathrm{Z}$. The circuit will have a 0 output for all other sets of input values. Simplify the expression derived and draw a block diagram for the simplified expression.
(b) Draw the block diagram of 8086 and explain queue and segment 07 registers.
OR
Q. 5 (a) Design two level NAND-to-NAND gate network for the expression : 07 $A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C$
(b) Explain different addressing modes of 8086 with example.07

