GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- I • EXAMINATION - WINTER 2017

Su	bject	Code: 2610004 Date: 05-01-2018	
Su	bject	Name: Fundamentals of Computer Organization	
	me: 1 tructio	0:30 am to 01:00 pm Total Marks: 70	
1115		Attempt all questions. Make suitable assumptions wherever necessary.	
Q.1	(a)	i) What is a BCD code? What are its advantages and disadvantages?ii) Where does complements are used? Compare 1's complement with 2'scomplement.	03 03
	(b)	 iii) What is mean by bistable device? i) Convert 131.5625 decimal number to equivalent binary number ii) Convert 0.001101101 binary number to equivalent decimal number iii) 1001.1+1011.01 iv) 7.75*2.5 in the binary number system v) 44/11 in the binary number system vi) 24.1 – 13.4 using 9's complement method vii) How many different binary numbers can be stored in a register consisting of six switches? 	01 01 01 01 01 01 01
Q.2	(a) (b)	each simplified expression, using AND and OR gate. i) AB'C' + A'B'C' + A'BC'+A'B'C ii) A(A+B+C) (A'+B+C) (A+B'+C) (A+B+C') Explain the block diagram of basic components of digital computer	07
	(b)	OR Write note on magnetic disk memories	07
Q.3	(a) (b)	Design and explain binary counter to count from 0 to 7 How to select single input from several inputs explain with block diagram. OR	07 07
Q.3	(a) (b)	Explain shift register with wave form and circuit diagram i) Explain full adder using two half adder ii) Explain integer representation of binary in digital machines.	07 07
Q.4	(a)	 (X, Y, Z, W)= Σm (4, 6, 7, 8) + D (2, 5, 11, 12) using K-map Find SOP expression Implement this simplified expression using two level AND-to-OR gate network. Implement this expression using NAND gates only. 	07
	(b)	What do you mean by Addressing Techniques? Explain Indirect and Indexed Addressing techniques with an example. OR	07

Q.4	(a)	Derive the Boolean algebra expression for gating network that will have output 0 only when X=1, Y=1, Z=1; X=0, Y=0, Z=0; X=1, Y=0, Z=0. The output are	07
		to be 1 for all other cases.	
		1. Find POS expression	
		2. Implement this simplified expression using two level OR-to-AND gate network.	
		3. Implement this expression using NOR gates only.	
	(b)	Explain the Concepts of Address Bus, Data Bus and Control Bus, Bus Width.	07
Q.5	(a)	i. Explain construction of instruction word format	01
		ii. How to write assembly code for the instruction C=A+B using zero, one	06
		and two addressing technique.	
	(b)	Draw the block diagram of 8086 architecture and explain functional part of Bus	07
		Interface unit	
		OR	
Q.5	(a)	Explain working of following instructions with example	07
		1. DIV	
		2. NOT	
		3. XOR	
		4. ADD	
		5. MOV	
		6. CMP	
		7. DEC	
	(b)	Explain different addressing modes of 8086 with example.	07
