\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 MCA - SEMESTER- II EXAMINATIONS - SUMMER 2016

Subject Code: 2620004
Date: 30-05-2016
Subject Name: Computer Oriented Numerical Methods
Time: 10.30a.m. To 01.00p.m.

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Intermediate calculation steps and results are to be shown, even while using the calculator.
Q. 1 (a) Give the graphical representation of the Fixed-Point Iteration method to find the root of the equation $f(x)=0$, for the cases of convergence as well as divergence.
(b) (1) Using Power method, determine the largest eigen value of the following matrix :

$$
\left[\begin{array}{ccc}
1 & -3 & 2 \\
4 & 4 & -1 \\
6 & 3 & 5
\end{array}\right]
$$

(2) Define the following terms : Absolute Error, Relative Error, and Blunders.
Q. 2 (a) Use Bisection method to find the root of the equation $x^{3}-5 x+1=0$, in the interval $[2,3]$, correct upto three decimal places.
(b) Find the root of the following equation correct upto three decimal places using Newton-Raphson method: $x^{3}-4 x^{2}+3 x+1=0$.

OR
(b) Find the root of the following equation correct upto three decimal places using Birge-Vieta method: $\mathrm{x}^{4}+24 \mathrm{x}-50=0$, (take $\mathrm{r}_{0}=1.5$). Perform only three iterations.
Q. 3 (a) The following data gives the melting point of an alloy of lead and zinc, where t is the temperature in ${ }^{\circ} \mathrm{C}$ and p is the $\%$ of lead in the alloy.

$\mathrm{p}:$	40	50	60	70	80	90
$\mathrm{t}:$	184	204	226	250	276	304

Using Newton's appropriate interpolation formula, find the melting point of the alloy containing 42% lead.
(b) Derive an expression for Newton's backward difference interpolation formula.

OR

Q. 3 (a) From the following data, find the value of y at $\mathrm{x}=0.5$, using Lagrange's07 interpolation formula.

x	$:$	-2	-1	2	3
y	$:$	-12	-8	3	5

(b) Fit a second degree parabola of the form $y=a x^{2}+b x+c$ to the following data by the method of least squares

$\mathrm{x}:$	1	2	3	4	5
$\mathrm{y}:$	5	12	26	60	97

Q. 4 (a) From the data, find numerically the first and second order derivatives at $\mathrm{x}=1.3$.
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using two-point Gauss Quadrature formula.

OR

Q. 4 (a) From the following table,

$\mathrm{x}:$	1.0	1.2	1.4	1.6	1.8	2.0
$\mathrm{y}:$	0	0.128	0.544	1.296	2.432	4.000

find $d y / d x$ and $d^{2} y / d x^{2}$ at $\mathrm{x}=1.1$.
(b) Evaluate the following integral $\int_{0}^{6} \frac{1}{4 x+5} d x$ using Simpson's $1 / 3 \mathrm{rd}$ and $3 / 8$ th rule, with 12 intervals.
Q. 5 (a) What is pivotal condensation ? Solve the following system of simultaneous linear equations using Gauss Elimination method.

$$
\begin{aligned}
x+y+2 z & =4 \\
3 x+y-3 z & =-4 \\
2 x-3 y-5 z & =-5
\end{aligned}
$$

(b) Solve the following differential equation $d y / d x=x-2 y, \mathrm{y}(0)=1$, using RungeKutta $4^{\text {th }}$ order method to find $y(0.1)$ and $y(0.2)$.

OR

Q. 5 (a) Solve the following system of simultaneous linear equations using Gauss-Seidel method :

$$
\begin{aligned}
& 5 x-2 y+z=-4 \\
& 3 x+y+5 z=13 \\
& x+6 y-2 z=-1
\end{aligned}
$$

(b) Given the following differential equation $d y / d x=x^{2}+x^{4} y$, with $y(0)=3$ and starting values $\mathrm{y}(0.1)=3.0050, \mathrm{y}(0.2)=3.0202$ and $\mathrm{y}(0.3)=3.0465$. Find $\mathrm{y}(0.4)$ using Adam-Bashforth-Moulton's predictor-corrector method.

