Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- II • EXAMINATION - WINTER 2016

Subject Code: 2620004 Date:05/01/2017

Subject Name: Computer Oriented Numerical Methods

Time: 02.30 PM TO 05.00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Do as directed:

07

- (i) Find relative error for 3.14 as a approximation of 22/7
- (ii) Round off four decimal digit: 0.00345575
- (iii) True/False: Number of row and Number of column is always same in scaler matrix
- (iv) Write the formula of A^{-1} (Assume A is a matrix).
- (v) Define Symmetric and skew symmetric matrix with example.
- (vi) Find positive root of $x^3 + 3x^2 27x + 25$ by discarte's Rule of sign.
- (vii) Give any two names of closed iterative method & Open iterative method
- (b) Determine the root of equation $x^4 x 10 = 0$ correct upto 3 place of decimal by using Bisection method
- Q.2 (a) Determine the root of equation $e^x = 2x + 1$ correct upto 3 place of 07 decimal by using Newton Raphson (NR) method.
 - (b) Determine the root of equation $f(x) = x \cos x$ correct upto 3 place of decimal by using False position method (Perform 5 iterations only)

OR

- (b) Find the root of the equation $x^3 + 2x^2 + 10x 20 = 0$ using Birge-Vieta method (Take r0 = 1). Perform only three iterations.
- Q.3 (a) The population of a certain town as obtained from census data is given in the following table:

					
Year	1931	1941	1951	1961	1971
Population	40.62	60.80	79.95	103.56	132.65

Find the rate of growth of the population in the year 1961.

		(b) Fit a	Straight lii ving data.	ne Y=aX	+b by t	he met	hod of	f Least sq	uare to the	07
		201101	X	11	12					
			Y	1.5	3			7	9	
			L <u>*</u>	11.5	2.8		1.0	4.7	6.0	
C).3 (-	langrange llowing tab	's interp ole.	olation,	OR find f	(0) wh	en the da	ta are given in	07
				X	-1	-2	12	74	7	
							2	4	1	
				f(x)	-1	-9	11	69)	
Q.) Find	$\int_0^4 (x^3 - 2x)^4 dx^3 = 2x^4 + 2x$	$(x^2 + 1) a$	/3 ,y(0.2 lx usin	¢)=0.99 g	00 , y(0.3)=0.99		od 07
	(b) Define	any six typ	e of mat	rix with	examp	king h le.	1 = 1 for t	ooth the cases.	07
Q.	4 (a)	Find J	$\int_0^1 \frac{dx}{1+x} u dx$	sing Sim	pson's 1	OR 1/3 rul	e by t	aking 10	sub intervals.	07
	(b)	equatio x x	Jauss CIIIII		ethod to	o find 1	oot of	`followin	g linear	07
Q.5	(a) (b)	anici en	unge-Kutt tial equation	un av/ax	= v + v	'. v(()) =	= 1 and	1 h0 <		07
	` ,	matrix	unspose of		7 -2 3 1 5 9	_	trix ai	id Adjoi	nt of following	g 07
					C)R				
Q.5	(a)	Find y(0. xy+1 & y	.4) by using y(0)=1, y(0	g Milne's .1)=1.105	s predict 3, y(0.2)	tor cor)=1.222	rector 29,y(0.	method 3)=1.3552	when dy/dx=	07
	(b)	Find out spline me	cubic alpir ethod when	ne for foll n y(1)= – (lowing d 6 ,y(2) =	lata & : -1, y	also fi (3)= 1	nd out y(6	1.5) by cubic	07
