GUJARAT TECHNOLOGICAL UNIVERSITY

MCA-SEMESTER-II• EXAMINATION - WINTER 2017

Subject Code: 2620004 Date: 03/01/2018

Subject Name: Computer Oriented Numerical Methods

Time:02:30pm TO 05:00pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) What is Total Numerical Error? Explain different types of numerical errors with suitable example.
 - (b) Use Gauss-Seidel method to find the solution of the following system of equations.

$$20x + 2y + z = 30$$

 $x - 40y + 3z = -75$
 $2x - y + 10z = 30$

- Q.2 (a) Use bisection method to find the root of the equation $x^3 9x + 1 = 0$, in the interval [0,1], correct up to two significant digit accuracy.
 - (b) Use false-position method to find a root of the equation x^2 17 correct up to three significant digit accuracy.

ΩR

- (b) the polynomial equation $f(x)=2x^3-5x+1=0$, taking initial value as using Birge-Vieta Method up to two significant digit accuracy.

X	0	1	2	3	4	5
Y	41	43	47	53	61	71

(b) Fit a straight line y=ax + b to the following data by the method of least square.

			<u> </u>					
X	3.4	4.3	5.4	6.7	8.7	10.6		
Y	4.5	5.8	6.8	8.1	10.5	12.7		
OR								

- Q.3 (a) Derive an expression for Newton's Backward Difference interpolation formula with example.
 - (b) Using Lagrange's Interpolation, find the value of f(0) at the table given below

 X -1 -2 2 4

 f(X) -1 -9 11 69
- Evaluate f(9) by using Newton's Divided Difference Interpolation Formula. **07 Q.4** (a) X 5 7 11 13 17 392 Y 150 1452 2366 5202
 - (b) Find a root of equation $x^3 2x 5 = 0$ using Secant Method correct to three significant digit accuracy.

07

07

(a) Use Gauss-Elimination method to find the solution of the following system of **07 Q.4** equations, find x_1 , x_2 , x_3 .

$$x_1 + 2x_2 + x_3 = 0$$

 $2x_1 + 2x_2 + 3x_3 = 3$
 $-x_1 - 3x_2 = 2$

(b) Find out A + B. A - B. 3A + 4B and 3A

ia out	A+B	, A	– B, 3	3A + 4B and $3A - 4B$ form given data,	
	\bigcap 1	3	-2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
A=	4	6	7	B= 0 -7 -8	
	_ 2	-5	0_	9 11 6	

Q.5 The following table shows age(X) and blood pressure(Y) of 8 persons, obtain **07** (a) the Regression equation of Y on X and also find the expected blood-pressure of a person who is 49 years old.

a person who is 15 years ord.									
X	52	63	45	36	72	65	47	25	
Y	62	53	51	25	79	43	60	33	

(b) From the following data fit a straight line and parabola, also find which fit is More reliable

Wiore remadie.									
X	0	1	2	3	4				
Y	1	5	10	22	38				

OR

- Apply Runge-Kutta 4^{th} order method to find y(0.1), if $dy/dx = x^2 + 2y$ **Q.5 07** y(0)=-1,h=0.1
 - **(b)** Define any six type of matrix with example.

07

07

07