\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 MCA - SEMESTER- II• EXAMINATION - SUMMER 2016

Subject Code: Computer Oriented Numerical Methods Subject Name: 620005
Time: 10.30a.m. To 01.00p.m.
Date: 30-05-2016

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Attempt the following:
4. Define Round off errors.
5. Define Truncation errors.
6. Define Total Numerical errors
7. State Descarte's rule of sign.
8. What is a matrix?
9. State any three types of matrices.
10. State the condition for multiplication of two matrices.
(b) Define error. Explain the types of errors with examples.
Q. 2 (a) Write an algorithm to solve a non-linear polynomial equation by Successive

Approximation method.
(b) Solve the equation $\mathrm{x}^{3}-4 \mathrm{x}^{2}+5 \mathrm{x}-2=0$ by Birge-Vieta method taking initial guess as 1.9 .

OR

(b) Solve the equation $\mathrm{x}^{4}-\mathrm{x}-10=10$ by Newton Raphson method, taking initial guess as 2.0.
Q. 3 (a) Find $\mathrm{y}(10)$ from the data given below using Lagrange's interpolation.

x	5	6	9	11
y	12	13	14	16

(b) Find $\mathrm{y}(46)$ and $\mathrm{y}(63)$ from the below given data using Newton's interpolation:

Age (x)	45	50	55	60	65
Premium (y)	114.84	96.16	83.22	74.48	68.48
OR					

Q. 3 (a) Obtain cubic spline equation for subinterval [0,1] for the data given in the table:

x	0	1	2	3
$f(x)$	1	2	33	244

(b) Determine the curve of the form $\mathrm{y}=\mathrm{a} \cdot \mathrm{x}^{\mathrm{b}}$, which is the best fit to the following data according to least square equation.

x	1.0	1.5	2.0	2.5	3.0	3.5
y	0.01	0.405	0.693	0.916	1.098	1.252

Q. 4 (a) The table below gives the results of an observation, ' θ ' is the observed temperature in degrees centigrade of a vessel of cooling water, ' t ' is the time in minutes from the beginning of observation.

t	1	3	5	7	9
θ	85.3	74.5	67.0	60.5	54.3

Find the appropriate rate of cooling at $\mathrm{t}=3$ and $\mathrm{t}=3.5$.
(b) Find the first two derivatives of ' x ' $1 / 3$ ' at $\mathrm{x}=50$ and $\mathrm{x}=56$ from the table below:

x	50	51	52	53	54	55	56
$\mathrm{y}=\mathrm{x}^{1 / 3}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259
OR							

Q. 4 (a) A Curve passes through the points (1, 2), (1.5, 2.4), (2.0, 2,7), (2.5, 2.8), (3, 3), $(3.5,2.6)$ and $(4.0,2.1)$. Obtain the area bounded by the curve, the X -axis and $x=1$ and $x=4$.
(b) A river is 80 metres wide. The depth ' d ' in metres at a distance ' x ' metres from one bank is given by the following table. Calculate the area of cross-section of the river using Simpson's $1 / 3$ rule.

x (distance in metres)	0	10	20	30	40	50	60	70	80
d (depth in metres)	0	4	7	9	12	15	14	8	3

Q. 5 (a) Use Milne-Simpson's Predictor corrector formula to solve
$y^{\prime}=2 y-y^{2}$, for $x=0.2$ and $x=0.25$ if
$y(0)=1$
$y(0.05)=1.0499584$
$y(0.10)=1.0996680$
$y(0.15)=1.148850$
(b) Solve the following system of linear equations using Gauss-Seidel method:
$2 x_{1}-2 x_{2}+5 x_{3}=13$
$2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+4 \mathrm{x}_{3}=20$
$3 \mathrm{x}_{1}-\mathrm{x}_{2}+3 \mathrm{x}_{3}=10$

OR

Q. 5 (a) Solve the following ordinary differential equation using Taylor series method:
$y^{\prime}=y^{2}+x$; given that $y(0)=0$, find $y(0.2)$.
(b) Use Runge Kutta $4^{\text {th }}$ order method to solve $\mathrm{y}(0.2)$ and $\mathrm{y}(0.4)$ when $\mathrm{y}^{\prime}=\left(2 \mathrm{xy}+\mathrm{e}^{\mathrm{x}}\right) /\left(\mathrm{x}^{2}+\mathrm{x} . \mathrm{e}^{\mathrm{x}}\right)$; given that $\mathrm{y}(0)=0$ and $\mathrm{h}=0.2$.

