GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-II • EXAMINATION - WINTER - 2017

Subject Code: 620005 Date: 03-01-2018

Subject Name: Computer Oriented Numerical Methods

Time:02:30 pm to 05:00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) 1. Explain different types of numerical errors with suitable examples. 04
 - Define Matrix, Trace of Matrix and Identity Matrix
 Solve the following system of equations using Guass Saidal method. Give the
 - **(b)** Solve the following system of equations using Guass Saidal method. Give the solution correct up to three significant figures.

$$20x + 2y + z = 30$$
$$x - 40y + 3z = -75$$

$$2x - y + 10z = 30$$

- Q.2 (a) Find a root of the equation $f(x) = e^x 3x \sin x$ using Newton Raphson method correct upto 4 significant digits.
 - (b) Certain corresponding values of x and $log_{10}x$ are given below. Find $log_{10} 301$.

 Also find x when $log_{10}x = 2.4857$ using Lagrange's Interpolation Method.

X	300	304	305	307
log10 x	2.4771	2.4829	2.4843	2.4871

OR

(b) Determine the constants a and b by the method of least squares such that y=ae^{bx} fits the following data.

х	2	4	6	8	10
у	4.077	11.084	30.128	81.897	222.62

Q.3 (a) Fit a Parabola, by the method of Least square to the following data. Also estimate y at x=6.

х	1	2	3	4	5
у	5	12	26	60	97

(b) The following table of x and y is given, Use Cubic Spline interpolation to compute y(1.2) and y'(1)

X	1	2	3	4
Y	1.5	2.2	3.1	4.3

OR

Q.3 (a) Compute f(0.23) and f(0.29) using interpolation method on the following data. 07

07

07

х	0.20	0.22	0.24	0.26	0.28	0.30
f(x)	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

A rod is rotating in a plane about one of its ends. The following table gives the 07 angle θ through which the rod has turned for different values of time t seconds. Find its angular velocity $\frac{d\theta}{dt}$ and angular acceleration $\frac{d^2\theta}{dt}$ at t=1.0

T secs	0.0	0.2	0.4	0.6	0.8	1.0
θ	0.0	0.12	0.48	1.10	2.00	3.20

(a) Compute the integral by $\int_0^{\pi/2} \sin x dx$ Q.4

07

- (i) Trapozoidal Rule
- (ii) Simpson's 1/3 rule taking 6 subintervals.
- **(b)** Use Runge-Kutta method of 4^{th} order to evaluate y(1.1) and y(1.2) by taking h=0.1 for $\frac{dy}{dx} = X^2 + Y^2$, y(1) = 007

(a) Find the eigenvalues and eigenvectors of the below matrix Q.4

07

- 0 -2 0
- **(b)** Using Milne's method, find y(0.8) given that $\frac{dy}{dy} = X - Y^2$, y(0)=0, y(0.2)=0.02, y(0.4)=0.0795, y(0.6)=0.1762

07

Find the root of x^4 - x - 10 = 0 using Birge-Vieta method. Take 1.5 as initial Q.5 approximation, correct up to 5 decimal places.

07

What are the pitfalls of Gauss Elimination Method? Solve the following equations using Gauss Elimination Method.

07

- 2x + 2y + 4z = 18
- x + 3y + 2z = 13

3x + y + 3z = 14

OR

Form the Taylor series solution of the initial value problem, $\frac{dy}{dx} = xy+1$, y(0)=107 Q.5 up to five terms and hence compute y(0.1) and y(0.2), correct up to four

(b) Evaluate $\int_{-2}^{4} (2X^3 - 3X^2 + 4X - 5) dx$ using Gauss Quadrature method.

07