Seat No.: _____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-III • EXAMINATION - SUMMER - 2017

Subject Code: 3630001 Date: 02/06/2017

Subject Name: Basic Mathematics

Time:02:30 pm - 05:00 pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) Show the following equivalences without constructing the truth table Q.1

(i)
$$(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$$

(ii) $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q)) \Leftrightarrow (\neg P \lor Q)$

03

- State Peano's axioms. **(b)** (i)
 - Prove that 1+2+3+...+n = n(n+1)/2(ii) 03
 - Show that $n^3 + 2n$ is divisible by 3 (iii) 02
- (a) Define: Maximal Compatibility Block. Let the compatibility relations on the 07 0.2 sets $\{1, 2, 3, 4, 5, 6\}$ and $\{x_1, x_2, \dots, x_6\}$ be given by following two matrices respectively. Construct the graph and find the maximum compatibility blocks.

(b) Construct the truth tables for the following formulas

(i)
$$((P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R)))$$

(ii) $(P \land Q) \lor (\neg P \land Q) \lor (\neg P \land \neg Q)$
03

(ii)
$$(P \land Q) \lor (\neg P \land Q) \lor (P \land \neg Q) \lor (\neg P \land \neg Q)$$
 03

- (b) Define Relation. Let $X = \{1, 2, 3, 4\}$ and $R = \{\langle x,y \rangle \mid x \rangle y\}$. Draw the graph 07 of R and also give its matrix.
- Draw the Hasse diagrams of the following sets under the partial ordering 07 Q.3 relation "divides" and indicate those which are totally ordered.
 - (i) {1,2,3,4}
- (ii) {3,5,15}
- (iii) {2,4,8,16}

- (iv) {1,2,3,6,12}
- (v) {2,3,6,12,24,36}
- **(b)** (i) For $A = \{2, 3, 4, 5, 6\}$, $B = \{3, 4, 5, 6, 7\}$, $C = \{4, 5, 6, 7, 8\}$ find 04 a) $(A \cup B) \cap (A \cup C)$ b) $(A \cap B) \cup (A \cap C)$
 - (ii) Define Power Set. Find the Power Set of the set $Q = \{1, \{2, 3\}, 4\}$ 03

OR

(a) Define Composition of a function. Let $X=\{1,2,3\}$ and f,g,h and s be functions Q.3 07 from X to X given by

$$f = \{\langle 1,2 \rangle, \langle 2,3 \rangle, \langle 3,1 \rangle\}$$
 $g = \{\langle 1,2 \rangle, \langle 2,1 \rangle, \langle 3,3 \rangle\}$
 $h = \{\langle 1,1 \rangle, \langle 2,2 \rangle, \langle 3,1 \rangle\}$ $s = \{\langle 1,1 \rangle, \langle 2,2 \rangle, \langle 3,3 \rangle\}$

Find fog, gof, fohog, sog, gos, sos

(b) What is Recursive Function? Write a Recursive algorithm to find out Fibonacci 07 series.

02

- (a) Define equivalence relation. Let $X = \{1, 2, ..., 7\}$ and 07 $R = \{\langle x,y \rangle \mid x-y \text{ is divisible by 3} \}$. Show that R is an equivalence relation. Draw the graph of R.
 - **(b)** Find the inverse of the matrix 07

$$A = \begin{pmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$

OR

(a) Explain with example injective (onto), surjective (one-to-one) and bijective (one-07 0.4 to-one onto) function. Let N be set of Natural numbers including zero. Determine whether the function given below is injective, surjective or bijective.

04

- $f: N \to N \quad f(j) = j^2 + 2$ **(b)** (i) If $A = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$ Show that $A^3 = I$ and so find A^{-1} (ii) Show that $\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$ is the inverse of $\begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$ 03
- (i) Define Cyclic graph, Null graph, and Strongly connected graph. 03 **Q.5** (ii) Define Adjacency matrix and path matrix of a graph. Explain each with 04 example.
 - (b) Define a unilateral component and strong component. Write unilateral and strong 07 and weak components of the Graph given in following figure.

OR

- Q.5 Define a directed tree. Draw the graph of the tree represented by 07 (A(B(E(H)(I))(F(J)(K))(G(L)))(C(M(O))(N(P)(Q)))(D(R(S(V))(T)(U)))Obtain the binary tree corresponding to it.
 - (b) (i) Define a path in graph. Define length of the path. What is difference between 03 a simple path and an elementary path?
 - (ii) Define isomorphic graphs. State whether the following graphs are 04 isomorphic or not.
