GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-III • EXAMINATION - WINTER 2016

Subject Code: 2630004 Date:04/01/ 2017

Subject Name: Operating Systems

Time: 10.30 AM TO 01.00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Answer the following questions in short.

07

- 1. What is cache memory?
- 2. What is the difference between hard and soft real-time tasks?
- 3. What does it mean to preempt a process?
- 4. What is jacketing?
- 5. What is JCL?
- 6. What is thrashing?
- 7. What is dispatcher?
- (b) 1. Suppose processor has to access 2 levels of memory. Level 1 is Cache and level 2 is RAM. Level 1 access time 0.1μs and level 2 access time of 1μs. If Hit ration (H=0.80) then find the average access time to access a byte. Note:- Assume that if a byte to be accessed in level 1 then the processor accesses it directly and if it is in level 2, then the byte is first transferred to level 1 and then access by the processor.
 - 2. What is context switching? How does it differ from mode switching?
 - 3. What is real time system?

01

03

03

02

04

03

- Q.2 (a) 1. What are the differences between user level threads and kernel supported threads.
 - rating **02**
 - 2. Which scheduling policy is most suitable for time-shared operating systems? Why?
 - 3. Why DMA is considered an efficient mechanism for performing I/O.
 - (b) 1. The following are the set of processes with their respective CPU burst

time (in milliseconds).

Processes CPU-burst time
P1 10
P2 5
P3 5

Calculate the average waiting time if the process arrived in the order:

(i) P1, P2 & P3 (ii) P2, P3 & P1

2. Consider the following segment table:

03

Segment	Base	Length
0	320	550
1	2300	14
2	90	100
3	1327	580
4	1952	96

What are the physical addresses for the following logical addresses?

a) 0,430 b) 1,10 c) 3,500

	(b)	1. Given memory partitions of 100K, 500K, 200K, 300K, and 600K (in order), how would each of the First-fit, Best-fit, and Worst-fit algorithms place processes of 212K, 417K, 112K, and 426K (in order)? Which algorithm makes the most efficient use of memory?	04
		 Consider a logical address space of 8 pages of 1024 words each, mapped onto a physical address space of 32 frames. How many bits are there in the logical address? How many bits are there in the physical address? 	03
Q.3	(a) (b)	Explain Instruction Fetch and Execution Cycle with proper example. List common events lead to a creation of process and also list the steps performed by an OS to create a new process OR	
Q.3	(a)	 What are semaphores? How do they implement mutual exclusion? What is Race condition? Explain with example. 	04 03
	(b)	Explain the Dinning Philosopher Problem. Give a proper solution for the problem using semaphore.	03
Q.4	(a)	What is virtual memory? Describe the combined paging and segmentation approach for memory management explaining how physical address is generated in this scheme.	
	(b)	Explain multiprocessor thread scheduling approaches. OR	07
Q.4	(a)	List the steps needed to perform page replacement. Explain the different page replacement policies. Also list out the main requirements, which should be satisfied by a page replacement policy.	07
	(b)	Briefly explain the seven RAID levels.	07
Q.5	(a) (b)	Explain Seven-state Process Model mentioning all its transitions. List various file allocation Methods. Explain in brief free space management. OR	07 07
Q.5	(a) (b)	What is RPC? Explain the required design configuration for RPC.What is thread? Discuss the importance of thread in multiprocessing.Discuss four necessary conditions for deadlock.	07 04 03
